Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{3}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-\frac{\sqrt{5}+\sqrt{30}}{\sqrt{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{3}}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{\sqrt{3}\sqrt{5}}{5}-\frac{\sqrt{5}+\sqrt{30}}{\sqrt{2}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{\sqrt{15}}{5}-\frac{\sqrt{5}+\sqrt{30}}{\sqrt{2}}
Hei whakarea \sqrt{3} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{15}}{5}-\frac{\left(\sqrt{5}+\sqrt{30}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{5}+\sqrt{30}}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\sqrt{15}}{5}-\frac{\left(\sqrt{5}+\sqrt{30}\right)\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{2\sqrt{15}}{10}-\frac{5\left(\sqrt{5}+\sqrt{30}\right)\sqrt{2}}{10}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5 me 2 ko 10. Whakareatia \frac{\sqrt{15}}{5} ki te \frac{2}{2}. Whakareatia \frac{\left(\sqrt{5}+\sqrt{30}\right)\sqrt{2}}{2} ki te \frac{5}{5}.
\frac{2\sqrt{15}-5\left(\sqrt{5}+\sqrt{30}\right)\sqrt{2}}{10}
Tā te mea he rite te tauraro o \frac{2\sqrt{15}}{10} me \frac{5\left(\sqrt{5}+\sqrt{30}\right)\sqrt{2}}{10}, me tango rāua mā te tango i ō raua taurunga.
\frac{2\sqrt{15}-5\sqrt{10}-10\sqrt{15}}{10}
Mahia ngā whakarea i roto o 2\sqrt{15}-5\left(\sqrt{5}+\sqrt{30}\right)\sqrt{2}.
\frac{-8\sqrt{15}-5\sqrt{10}}{10}
Mahia ngā tātaitai i roto o 2\sqrt{15}-5\sqrt{10}-10\sqrt{15}.