Aromātai
-\frac{\sqrt{10}}{2}-\frac{4\sqrt{15}}{5}\approx -4.679525507
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{3}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-\frac{\sqrt{5}+\sqrt{30}}{\sqrt{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{3}}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{\sqrt{3}\sqrt{5}}{5}-\frac{\sqrt{5}+\sqrt{30}}{\sqrt{2}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{\sqrt{15}}{5}-\frac{\sqrt{5}+\sqrt{30}}{\sqrt{2}}
Hei whakarea \sqrt{3} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{15}}{5}-\frac{\left(\sqrt{5}+\sqrt{30}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{5}+\sqrt{30}}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\sqrt{15}}{5}-\frac{\left(\sqrt{5}+\sqrt{30}\right)\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{2\sqrt{15}}{10}-\frac{5\left(\sqrt{5}+\sqrt{30}\right)\sqrt{2}}{10}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5 me 2 ko 10. Whakareatia \frac{\sqrt{15}}{5} ki te \frac{2}{2}. Whakareatia \frac{\left(\sqrt{5}+\sqrt{30}\right)\sqrt{2}}{2} ki te \frac{5}{5}.
\frac{2\sqrt{15}-5\left(\sqrt{5}+\sqrt{30}\right)\sqrt{2}}{10}
Tā te mea he rite te tauraro o \frac{2\sqrt{15}}{10} me \frac{5\left(\sqrt{5}+\sqrt{30}\right)\sqrt{2}}{10}, me tango rāua mā te tango i ō raua taurunga.
\frac{2\sqrt{15}-5\sqrt{10}-10\sqrt{15}}{10}
Mahia ngā whakarea i roto o 2\sqrt{15}-5\left(\sqrt{5}+\sqrt{30}\right)\sqrt{2}.
\frac{-8\sqrt{15}-5\sqrt{10}}{10}
Mahia ngā tātaitai i roto o 2\sqrt{15}-5\sqrt{10}-10\sqrt{15}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}