Aromātai
2\sqrt{3}\left(\sqrt{2}+1\right)\approx 8.363081101
Tauwehe
2 \sqrt{3} {(\sqrt{2} + 1)} = 8.363081101
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { \sqrt { 3 } + \sqrt { 3 } } { \sqrt { 2 } - 1 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\sqrt{3}}{\sqrt{2}-1}
Pahekotia te \sqrt{3} me \sqrt{3}, ka 2\sqrt{3}.
\frac{2\sqrt{3}\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}
Whakangāwaritia te tauraro o \frac{2\sqrt{3}}{\sqrt{2}-1} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}+1.
\frac{2\sqrt{3}\left(\sqrt{2}+1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}
Whakaarohia te \left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{3}\left(\sqrt{2}+1\right)}{2-1}
Pūrua \sqrt{2}. Pūrua 1.
\frac{2\sqrt{3}\left(\sqrt{2}+1\right)}{1}
Tangohia te 1 i te 2, ka 1.
2\sqrt{3}\left(\sqrt{2}+1\right)
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
2\sqrt{3}\sqrt{2}+2\sqrt{3}
Whakamahia te āhuatanga tohatoha hei whakarea te 2\sqrt{3} ki te \sqrt{2}+1.
2\sqrt{6}+2\sqrt{3}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}