Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{12\sqrt{2}}{\sqrt{20}}
Tauwehea te 288=12^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{12^{2}\times 2} hei hua o ngā pūtake rua \sqrt{12^{2}}\sqrt{2}. Tuhia te pūtakerua o te 12^{2}.
\frac{12\sqrt{2}}{2\sqrt{5}}
Tauwehea te 20=2^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 5} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{5}. Tuhia te pūtakerua o te 2^{2}.
\frac{6\sqrt{2}}{\sqrt{5}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{6\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Whakangāwaritia te tauraro o \frac{6\sqrt{2}}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{6\sqrt{2}\sqrt{5}}{5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{6\sqrt{10}}{5}
Hei whakarea \sqrt{2} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.