Tīpoka ki ngā ihirangi matua
Whakaoti mō v
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{2x+3}-\sqrt{x}=\left(x+1\right)\left(x+3\right)v
Whakareatia ngā taha e rua o te whārite ki te \left(x+1\right)\left(x+3\right).
\sqrt{2x+3}-\sqrt{x}=\left(x^{2}+4x+3\right)v
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te x+3 ka whakakotahi i ngā kupu rite.
\sqrt{2x+3}-\sqrt{x}=x^{2}v+4xv+3v
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+4x+3 ki te v.
x^{2}v+4xv+3v=\sqrt{2x+3}-\sqrt{x}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(x^{2}+4x+3\right)v=\sqrt{2x+3}-\sqrt{x}
Pahekotia ngā kīanga tau katoa e whai ana i te v.
\frac{\left(x^{2}+4x+3\right)v}{x^{2}+4x+3}=\frac{\sqrt{2x+3}-\sqrt{x}}{x^{2}+4x+3}
Whakawehea ngā taha e rua ki te x^{2}+4x+3.
v=\frac{\sqrt{2x+3}-\sqrt{x}}{x^{2}+4x+3}
Mā te whakawehe ki te x^{2}+4x+3 ka wetekia te whakareanga ki te x^{2}+4x+3.
v=\frac{\sqrt{2x+3}-\sqrt{x}}{\left(x+1\right)\left(x+3\right)}
Whakawehe \sqrt{2x+3}-\sqrt{x} ki te x^{2}+4x+3.