Whakaoti mō v
v=\frac{\sqrt{2x+3}-\sqrt{x}}{\left(x+1\right)\left(x+3\right)}
x\geq 0
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{2x+3}-\sqrt{x}=\left(x+1\right)\left(x+3\right)v
Whakareatia ngā taha e rua o te whārite ki te \left(x+1\right)\left(x+3\right).
\sqrt{2x+3}-\sqrt{x}=\left(x^{2}+4x+3\right)v
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te x+3 ka whakakotahi i ngā kupu rite.
\sqrt{2x+3}-\sqrt{x}=x^{2}v+4xv+3v
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+4x+3 ki te v.
x^{2}v+4xv+3v=\sqrt{2x+3}-\sqrt{x}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(x^{2}+4x+3\right)v=\sqrt{2x+3}-\sqrt{x}
Pahekotia ngā kīanga tau katoa e whai ana i te v.
\frac{\left(x^{2}+4x+3\right)v}{x^{2}+4x+3}=\frac{\sqrt{2x+3}-\sqrt{x}}{x^{2}+4x+3}
Whakawehea ngā taha e rua ki te x^{2}+4x+3.
v=\frac{\sqrt{2x+3}-\sqrt{x}}{x^{2}+4x+3}
Mā te whakawehe ki te x^{2}+4x+3 ka wetekia te whakareanga ki te x^{2}+4x+3.
v=\frac{\sqrt{2x+3}-\sqrt{x}}{\left(x+1\right)\left(x+3\right)}
Whakawehe \sqrt{2x+3}-\sqrt{x} ki te x^{2}+4x+3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}