Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{2}}{\sqrt{2}-1}
Me whakakore tahi te a i te taurunga me te tauraro.
\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{2}}{\sqrt{2}-1} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}+1.
\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}
Whakaarohia te \left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{2-1}
Pūrua \sqrt{2}. Pūrua 1.
\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{1}
Tangohia te 1 i te 2, ka 1.
\sqrt{2}\left(\sqrt{2}+1\right)
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\left(\sqrt{2}\right)^{2}+\sqrt{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \sqrt{2} ki te \sqrt{2}+1.
2+\sqrt{2}
Ko te pūrua o \sqrt{2} ko 2.