Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(\sqrt{2}-4\right)\left(\sqrt{5}-4\right)}{\left(\sqrt{5}+4\right)\left(\sqrt{5}-4\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{2}-4}{\sqrt{5}+4} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}-4.
\frac{\left(\sqrt{2}-4\right)\left(\sqrt{5}-4\right)}{\left(\sqrt{5}\right)^{2}-4^{2}}
Whakaarohia te \left(\sqrt{5}+4\right)\left(\sqrt{5}-4\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}-4\right)\left(\sqrt{5}-4\right)}{5-16}
Pūrua \sqrt{5}. Pūrua 4.
\frac{\left(\sqrt{2}-4\right)\left(\sqrt{5}-4\right)}{-11}
Tangohia te 16 i te 5, ka -11.
\frac{\sqrt{2}\sqrt{5}-4\sqrt{2}-4\sqrt{5}+16}{-11}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o \sqrt{2}-4 ki ia tau o \sqrt{5}-4.
\frac{\sqrt{10}-4\sqrt{2}-4\sqrt{5}+16}{-11}
Hei whakarea \sqrt{2} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{-\sqrt{10}+4\sqrt{2}+4\sqrt{5}-16}{11}
Me whakarea tahi te taurunga me te tauraro ki te -1.