Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{2}-\sqrt{5}}{\sqrt{2}+\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}-\sqrt{5}.
\frac{\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Whakaarohia te \left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)}{2-5}
Pūrua \sqrt{2}. Pūrua \sqrt{5}.
\frac{\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)}{-3}
Tangohia te 5 i te 2, ka -3.
\frac{\left(\sqrt{2}-\sqrt{5}\right)^{2}}{-3}
Whakareatia te \sqrt{2}-\sqrt{5} ki te \sqrt{2}-\sqrt{5}, ka \left(\sqrt{2}-\sqrt{5}\right)^{2}.
\frac{\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{-3}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{2}-\sqrt{5}\right)^{2}.
\frac{2-2\sqrt{2}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{-3}
Ko te pūrua o \sqrt{2} ko 2.
\frac{2-2\sqrt{10}+\left(\sqrt{5}\right)^{2}}{-3}
Hei whakarea \sqrt{2} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{2-2\sqrt{10}+5}{-3}
Ko te pūrua o \sqrt{5} ko 5.
\frac{7-2\sqrt{10}}{-3}
Tāpirihia te 2 ki te 5, ka 7.
\frac{-7+2\sqrt{10}}{3}
Me whakarea tahi te taurunga me te tauraro ki te -1.