Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{2}}{\sqrt{3}-\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}+\sqrt{5}.
\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Whakaarohia te \left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Pūrua \sqrt{3}. Pūrua \sqrt{5}.
\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)}{-2}
Tangohia te 5 i te 3, ka -2.
\frac{\sqrt{2}\sqrt{3}+\sqrt{2}\sqrt{5}}{-2}
Whakamahia te āhuatanga tohatoha hei whakarea te \sqrt{2} ki te \sqrt{3}+\sqrt{5}.
\frac{\sqrt{6}+\sqrt{2}\sqrt{5}}{-2}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{6}+\sqrt{10}}{-2}
Hei whakarea \sqrt{2} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{-\sqrt{6}-\sqrt{10}}{2}
Me whakarea tahi te taurunga me te tauraro ki te -1.