Whakaoti mō x
x=\sqrt{3}\approx 1.732050808
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{2}\times 3}{\sqrt{5}}=\frac{x}{\frac{\sqrt{5}}{\sqrt{6}}}
Whakawehe \sqrt{2} ki te \frac{\sqrt{5}}{3} mā te whakarea \sqrt{2} ki te tau huripoki o \frac{\sqrt{5}}{3}.
\frac{\sqrt{2}\times 3\sqrt{5}}{\left(\sqrt{5}\right)^{2}}=\frac{x}{\frac{\sqrt{5}}{\sqrt{6}}}
Whakangāwaritia te tauraro o \frac{\sqrt{2}\times 3}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{\sqrt{2}\times 3\sqrt{5}}{5}=\frac{x}{\frac{\sqrt{5}}{\sqrt{6}}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{\sqrt{10}\times 3}{5}=\frac{x}{\frac{\sqrt{5}}{\sqrt{6}}}
Hei whakarea \sqrt{2} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{10}\times 3}{5}=\frac{x\sqrt{6}}{\sqrt{5}}
Whakawehe x ki te \frac{\sqrt{5}}{\sqrt{6}} mā te whakarea x ki te tau huripoki o \frac{\sqrt{5}}{\sqrt{6}}.
\frac{\sqrt{10}\times 3}{5}=\frac{x\sqrt{6}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Whakangāwaritia te tauraro o \frac{x\sqrt{6}}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{\sqrt{10}\times 3}{5}=\frac{x\sqrt{6}\sqrt{5}}{5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{\sqrt{10}\times 3}{5}=\frac{x\sqrt{30}}{5}
Hei whakarea \sqrt{6} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{x\sqrt{30}}{5}=\frac{\sqrt{10}\times 3}{5}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x\sqrt{30}=\sqrt{10}\times 3
Whakareatia ngā taha e rua o te whārite ki te 5.
\sqrt{30}x=3\sqrt{10}
He hanga arowhānui tō te whārite.
\frac{\sqrt{30}x}{\sqrt{30}}=\frac{3\sqrt{10}}{\sqrt{30}}
Whakawehea ngā taha e rua ki te \sqrt{30}.
x=\frac{3\sqrt{10}}{\sqrt{30}}
Mā te whakawehe ki te \sqrt{30} ka wetekia te whakareanga ki te \sqrt{30}.
x=\sqrt{3}
Whakawehe 3\sqrt{10} ki te \sqrt{30}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}