Aromātai
\sqrt{6}+3\approx 5.449489743
Tohaina
Kua tāruatia ki te papatopenga
\frac{3\sqrt{2}-\sqrt{12}}{\sqrt{50}-\sqrt{48}}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
\frac{3\sqrt{2}-2\sqrt{3}}{\sqrt{50}-\sqrt{48}}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
\frac{3\sqrt{2}-2\sqrt{3}}{5\sqrt{2}-\sqrt{48}}
Tauwehea te 50=5^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 2} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{2}. Tuhia te pūtakerua o te 5^{2}.
\frac{3\sqrt{2}-2\sqrt{3}}{5\sqrt{2}-4\sqrt{3}}
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{\left(5\sqrt{2}-4\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{3\sqrt{2}-2\sqrt{3}}{5\sqrt{2}-4\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 5\sqrt{2}+4\sqrt{3}.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{\left(5\sqrt{2}\right)^{2}-\left(-4\sqrt{3}\right)^{2}}
Whakaarohia te \left(5\sqrt{2}-4\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{5^{2}\left(\sqrt{2}\right)^{2}-\left(-4\sqrt{3}\right)^{2}}
Whakarohaina te \left(5\sqrt{2}\right)^{2}.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{25\left(\sqrt{2}\right)^{2}-\left(-4\sqrt{3}\right)^{2}}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{25\times 2-\left(-4\sqrt{3}\right)^{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-\left(-4\sqrt{3}\right)^{2}}
Whakareatia te 25 ki te 2, ka 50.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-\left(-4\right)^{2}\left(\sqrt{3}\right)^{2}}
Whakarohaina te \left(-4\sqrt{3}\right)^{2}.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-16\left(\sqrt{3}\right)^{2}}
Tātaihia te -4 mā te pū o 2, kia riro ko 16.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-16\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-48}
Whakareatia te 16 ki te 3, ka 48.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{2}
Tangohia te 48 i te 50, ka 2.
\frac{15\left(\sqrt{2}\right)^{2}+12\sqrt{3}\sqrt{2}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 3\sqrt{2}-2\sqrt{3} ki ia tau o 5\sqrt{2}+4\sqrt{3}.
\frac{15\times 2+12\sqrt{3}\sqrt{2}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{30+12\sqrt{3}\sqrt{2}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
Whakareatia te 15 ki te 2, ka 30.
\frac{30+12\sqrt{6}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{30+12\sqrt{6}-10\sqrt{6}-8\left(\sqrt{3}\right)^{2}}{2}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{30+2\sqrt{6}-8\left(\sqrt{3}\right)^{2}}{2}
Pahekotia te 12\sqrt{6} me -10\sqrt{6}, ka 2\sqrt{6}.
\frac{30+2\sqrt{6}-8\times 3}{2}
Ko te pūrua o \sqrt{3} ko 3.
\frac{30+2\sqrt{6}-24}{2}
Whakareatia te -8 ki te 3, ka -24.
\frac{6+2\sqrt{6}}{2}
Tangohia te 24 i te 30, ka 6.
3+\sqrt{6}
Whakawehea ia wā o 6+2\sqrt{6} ki te 2, kia riro ko 3+\sqrt{6}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}