Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\sqrt{2}}{5\sqrt{18}+3\sqrt{72}-2\sqrt{162}}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
\frac{3\sqrt{2}}{5\times 3\sqrt{2}+3\sqrt{72}-2\sqrt{162}}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
\frac{3\sqrt{2}}{15\sqrt{2}+3\sqrt{72}-2\sqrt{162}}
Whakareatia te 5 ki te 3, ka 15.
\frac{3\sqrt{2}}{15\sqrt{2}+3\times 6\sqrt{2}-2\sqrt{162}}
Tauwehea te 72=6^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 2} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{2}. Tuhia te pūtakerua o te 6^{2}.
\frac{3\sqrt{2}}{15\sqrt{2}+18\sqrt{2}-2\sqrt{162}}
Whakareatia te 3 ki te 6, ka 18.
\frac{3\sqrt{2}}{33\sqrt{2}-2\sqrt{162}}
Pahekotia te 15\sqrt{2} me 18\sqrt{2}, ka 33\sqrt{2}.
\frac{3\sqrt{2}}{33\sqrt{2}-2\times 9\sqrt{2}}
Tauwehea te 162=9^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{9^{2}\times 2} hei hua o ngā pūtake rua \sqrt{9^{2}}\sqrt{2}. Tuhia te pūtakerua o te 9^{2}.
\frac{3\sqrt{2}}{33\sqrt{2}-18\sqrt{2}}
Whakareatia te -2 ki te 9, ka -18.
\frac{3\sqrt{2}}{15\sqrt{2}}
Pahekotia te 33\sqrt{2} me -18\sqrt{2}, ka 15\sqrt{2}.
\frac{1}{5}
Me whakakore tahi te 3\sqrt{2} i te taurunga me te tauraro.