Aromātai
\frac{1}{5}=0.2
Tauwehe
\frac{1}{5} = 0.2
Tohaina
Kua tāruatia ki te papatopenga
\frac{3\sqrt{2}}{5\sqrt{18}+3\sqrt{72}-2\sqrt{162}}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
\frac{3\sqrt{2}}{5\times 3\sqrt{2}+3\sqrt{72}-2\sqrt{162}}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
\frac{3\sqrt{2}}{15\sqrt{2}+3\sqrt{72}-2\sqrt{162}}
Whakareatia te 5 ki te 3, ka 15.
\frac{3\sqrt{2}}{15\sqrt{2}+3\times 6\sqrt{2}-2\sqrt{162}}
Tauwehea te 72=6^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 2} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{2}. Tuhia te pūtakerua o te 6^{2}.
\frac{3\sqrt{2}}{15\sqrt{2}+18\sqrt{2}-2\sqrt{162}}
Whakareatia te 3 ki te 6, ka 18.
\frac{3\sqrt{2}}{33\sqrt{2}-2\sqrt{162}}
Pahekotia te 15\sqrt{2} me 18\sqrt{2}, ka 33\sqrt{2}.
\frac{3\sqrt{2}}{33\sqrt{2}-2\times 9\sqrt{2}}
Tauwehea te 162=9^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{9^{2}\times 2} hei hua o ngā pūtake rua \sqrt{9^{2}}\sqrt{2}. Tuhia te pūtakerua o te 9^{2}.
\frac{3\sqrt{2}}{33\sqrt{2}-18\sqrt{2}}
Whakareatia te -2 ki te 9, ka -18.
\frac{3\sqrt{2}}{15\sqrt{2}}
Pahekotia te 33\sqrt{2} me -18\sqrt{2}, ka 15\sqrt{2}.
\frac{1}{5}
Me whakakore tahi te 3\sqrt{2} i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}