Aromātai
\frac{65\sqrt{17}+567}{256}\approx 3.261726038
Tauwehe
\frac{65 \sqrt{17} + 567}{256} = 3.2617260377544843
Tohaina
Kua tāruatia ki te papatopenga
\frac{64\left(\sqrt{17}+9\right)}{256}-\frac{9-\sqrt{17}}{256}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 4 me 256 ko 256. Whakareatia \frac{\sqrt{17}+9}{4} ki te \frac{64}{64}.
\frac{64\left(\sqrt{17}+9\right)-\left(9-\sqrt{17}\right)}{256}
Tā te mea he rite te tauraro o \frac{64\left(\sqrt{17}+9\right)}{256} me \frac{9-\sqrt{17}}{256}, me tango rāua mā te tango i ō raua taurunga.
\frac{64\sqrt{17}+576-9+\sqrt{17}}{256}
Mahia ngā whakarea i roto o 64\left(\sqrt{17}+9\right)-\left(9-\sqrt{17}\right).
\frac{65\sqrt{17}+567}{256}
Mahia ngā tātaitai i roto o 64\sqrt{17}+576-9+\sqrt{17}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}