Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2\sqrt{3}}{\sqrt{2}-1}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
\frac{2\sqrt{3}\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}
Whakangāwaritia te tauraro o \frac{2\sqrt{3}}{\sqrt{2}-1} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}+1.
\frac{2\sqrt{3}\left(\sqrt{2}+1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}
Whakaarohia te \left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{3}\left(\sqrt{2}+1\right)}{2-1}
Pūrua \sqrt{2}. Pūrua 1.
\frac{2\sqrt{3}\left(\sqrt{2}+1\right)}{1}
Tangohia te 1 i te 2, ka 1.
2\sqrt{3}\left(\sqrt{2}+1\right)
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
2\sqrt{3}\sqrt{2}+2\sqrt{3}
Whakamahia te āhuatanga tohatoha hei whakarea te 2\sqrt{3} ki te \sqrt{2}+1.
2\sqrt{6}+2\sqrt{3}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.