Aromātai
\sqrt{2}+2\approx 3.414213562
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\sqrt{3}+\sqrt{6}+\sqrt{2}+2}{\sqrt{3}+1}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
Whakangāwaritia te tauraro o \frac{2\sqrt{3}+\sqrt{6}+\sqrt{2}+2}{\sqrt{3}+1} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}-1.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Whakaarohia te \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{3-1}
Pūrua \sqrt{3}. Pūrua 1.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{2}
Tangohia te 1 i te 3, ka 2.
\frac{2\left(\sqrt{3}\right)^{2}-2\sqrt{3}+\sqrt{6}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2\sqrt{3}+\sqrt{6}+\sqrt{2}+2 ki ia tau o \sqrt{3}-1.
\frac{2\times 3-2\sqrt{3}+\sqrt{6}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
Ko te pūrua o \sqrt{3} ko 3.
\frac{6-2\sqrt{3}+\sqrt{6}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
Whakareatia te 2 ki te 3, ka 6.
\frac{6-2\sqrt{3}+\sqrt{3}\sqrt{2}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
\frac{6-2\sqrt{3}+3\sqrt{2}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{6-2\sqrt{3}+3\sqrt{2}-\sqrt{6}+\sqrt{6}-\sqrt{2}+2\sqrt{3}-2}{2}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{6-2\sqrt{3}+3\sqrt{2}-\sqrt{2}+2\sqrt{3}-2}{2}
Pahekotia te -\sqrt{6} me \sqrt{6}, ka 0.
\frac{6-2\sqrt{3}+2\sqrt{2}+2\sqrt{3}-2}{2}
Pahekotia te 3\sqrt{2} me -\sqrt{2}, ka 2\sqrt{2}.
\frac{6+2\sqrt{2}-2}{2}
Pahekotia te -2\sqrt{3} me 2\sqrt{3}, ka 0.
\frac{4+2\sqrt{2}}{2}
Tangohia te 2 i te 6, ka 4.
2+\sqrt{2}
Whakawehea ia wā o 4+2\sqrt{2} ki te 2, kia riro ko 2+\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}