Aromātai
\sqrt{5}\approx 2.236067977
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\sqrt{10}+\sqrt{15}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{10}+\sqrt{15}}{\sqrt{2}+\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}-\sqrt{3}.
\frac{\left(\sqrt{10}+\sqrt{15}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Whakaarohia te \left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{10}+\sqrt{15}\right)\left(\sqrt{2}-\sqrt{3}\right)}{2-3}
Pūrua \sqrt{2}. Pūrua \sqrt{3}.
\frac{\left(\sqrt{10}+\sqrt{15}\right)\left(\sqrt{2}-\sqrt{3}\right)}{-1}
Tangohia te 3 i te 2, ka -1.
-\left(\sqrt{10}+\sqrt{15}\right)\left(\sqrt{2}-\sqrt{3}\right)
Ko te mea whakawehea ki te -1 ka hōmai i tōna kōaro.
-\left(\sqrt{10}\sqrt{2}-\sqrt{10}\sqrt{3}+\sqrt{15}\sqrt{2}-\sqrt{15}\sqrt{3}\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o \sqrt{10}+\sqrt{15} ki ia tau o \sqrt{2}-\sqrt{3}.
-\left(\sqrt{2}\sqrt{5}\sqrt{2}-\sqrt{10}\sqrt{3}+\sqrt{15}\sqrt{2}-\sqrt{15}\sqrt{3}\right)
Tauwehea te 10=2\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2\times 5} hei hua o ngā pūtake rua \sqrt{2}\sqrt{5}.
-\left(2\sqrt{5}-\sqrt{10}\sqrt{3}+\sqrt{15}\sqrt{2}-\sqrt{15}\sqrt{3}\right)
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
-\left(2\sqrt{5}-\sqrt{30}+\sqrt{15}\sqrt{2}-\sqrt{15}\sqrt{3}\right)
Hei whakarea \sqrt{10} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
-\left(2\sqrt{5}-\sqrt{30}+\sqrt{30}-\sqrt{15}\sqrt{3}\right)
Hei whakarea \sqrt{15} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
-\left(2\sqrt{5}-\sqrt{15}\sqrt{3}\right)
Pahekotia te -\sqrt{30} me \sqrt{30}, ka 0.
-\left(2\sqrt{5}-\sqrt{3}\sqrt{5}\sqrt{3}\right)
Tauwehea te 15=3\times 5. Tuhia anō te pūtake rua o te hua \sqrt{3\times 5} hei hua o ngā pūtake rua \sqrt{3}\sqrt{5}.
-\left(2\sqrt{5}-3\sqrt{5}\right)
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
-\left(-\sqrt{5}\right)
Pahekotia te 2\sqrt{5} me -3\sqrt{5}, ka -\sqrt{5}.
\sqrt{5}
Ko te tauaro o -\sqrt{5} ko \sqrt{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}