Aromātai
\text{Indeterminate}
Aromātai (complex solution)
\frac{-2\sqrt{2}i+1}{3}\approx 0.333333333-0.942809042i
Wāhi Tūturu (complex solution)
\frac{1}{3} = 0.3333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\sqrt{-2}+1\right)\left(\sqrt{-2}+1\right)}{\left(\sqrt{-2}-1\right)\left(\sqrt{-2}+1\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{-2}+1}{\sqrt{-2}-1} mā te whakarea i te taurunga me te tauraro ki te \sqrt{-2}+1.
\frac{\left(\sqrt{-2}+1\right)\left(\sqrt{-2}+1\right)}{\left(\sqrt{-2}\right)^{2}-1^{2}}
Whakaarohia te \left(\sqrt{-2}-1\right)\left(\sqrt{-2}+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{-2}+1\right)\left(\sqrt{-2}+1\right)}{-2-1}
Pūrua \sqrt{-2}. Pūrua 1.
\frac{\left(\sqrt{-2}+1\right)\left(\sqrt{-2}+1\right)}{-3}
Tangohia te 1 i te -2, ka -3.
\frac{\left(\sqrt{-2}+1\right)^{2}}{-3}
Whakareatia te \sqrt{-2}+1 ki te \sqrt{-2}+1, ka \left(\sqrt{-2}+1\right)^{2}.
\frac{\left(\sqrt{-2}\right)^{2}+2\sqrt{-2}+1}{-3}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{-2}+1\right)^{2}.
\frac{-2+2\sqrt{-2}+1}{-3}
Tātaihia te \sqrt{-2} mā te pū o 2, kia riro ko -2.
\frac{-1+2\sqrt{-2}}{-3}
Tāpirihia te -2 ki te 1, ka -1.
\frac{1-2\sqrt{-2}}{3}
Me whakarea tahi te taurunga me te tauraro ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}