Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Aromātai (complex solution)
Tick mark Image
Wāhi Tūturu (complex solution)
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(\sqrt{-2}+1\right)\left(\sqrt{-2}+1\right)}{\left(\sqrt{-2}-1\right)\left(\sqrt{-2}+1\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{-2}+1}{\sqrt{-2}-1} mā te whakarea i te taurunga me te tauraro ki te \sqrt{-2}+1.
\frac{\left(\sqrt{-2}+1\right)\left(\sqrt{-2}+1\right)}{\left(\sqrt{-2}\right)^{2}-1^{2}}
Whakaarohia te \left(\sqrt{-2}-1\right)\left(\sqrt{-2}+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{-2}+1\right)\left(\sqrt{-2}+1\right)}{-2-1}
Pūrua \sqrt{-2}. Pūrua 1.
\frac{\left(\sqrt{-2}+1\right)\left(\sqrt{-2}+1\right)}{-3}
Tangohia te 1 i te -2, ka -3.
\frac{\left(\sqrt{-2}+1\right)^{2}}{-3}
Whakareatia te \sqrt{-2}+1 ki te \sqrt{-2}+1, ka \left(\sqrt{-2}+1\right)^{2}.
\frac{\left(\sqrt{-2}\right)^{2}+2\sqrt{-2}+1}{-3}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{-2}+1\right)^{2}.
\frac{-2+2\sqrt{-2}+1}{-3}
Tātaihia te \sqrt{-2} mā te pū o 2, kia riro ko -2.
\frac{-1+2\sqrt{-2}}{-3}
Tāpirihia te -2 ki te 1, ka -1.
\frac{1-2\sqrt{-2}}{3}
Me whakarea tahi te taurunga me te tauraro ki te -1.