Aromātai (complex solution)
\frac{\sqrt{6}}{3}\approx 0.816496581
Wāhi Tūturu (complex solution)
\frac{\sqrt{6}}{3} = 0.8164965809277259
Aromātai
\text{Indeterminate}
Tohaina
Kua tāruatia ki te papatopenga
\frac{3i\sqrt{2}}{\sqrt{-27}}
Tauwehea te -18=\left(3i\right)^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{\left(3i\right)^{2}\times 2} hei hua o ngā pūtake rua \sqrt{\left(3i\right)^{2}}\sqrt{2}. Tuhia te pūtakerua o te \left(3i\right)^{2}.
\frac{3i\sqrt{2}}{3i\sqrt{3}}
Tauwehea te -27=\left(3i\right)^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{\left(3i\right)^{2}\times 3} hei hua o ngā pūtake rua \sqrt{\left(3i\right)^{2}}\sqrt{3}. Tuhia te pūtakerua o te \left(3i\right)^{2}.
\frac{\sqrt{2}}{\sqrt{3}\times \left(3i\right)^{0}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}\times \left(3i\right)^{0}}
Whakangāwaritia te tauraro o \frac{\sqrt{2}}{\sqrt{3}\times \left(3i\right)^{0}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\sqrt{2}\sqrt{3}}{3\times \left(3i\right)^{0}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\sqrt{6}}{3\times \left(3i\right)^{0}}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{6}}{3\times 1}
Tātaihia te 3i mā te pū o 0, kia riro ko 1.
\frac{\sqrt{6}}{3}
Whakareatia te 3 ki te 1, ka 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}