Tīpoka ki ngā ihirangi matua
Aromātai (complex solution)
Tick mark Image
Wāhi Tūturu (complex solution)
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3i\sqrt{2}}{\sqrt{-27}}
Tauwehea te -18=\left(3i\right)^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{\left(3i\right)^{2}\times 2} hei hua o ngā pūtake rua \sqrt{\left(3i\right)^{2}}\sqrt{2}. Tuhia te pūtakerua o te \left(3i\right)^{2}.
\frac{3i\sqrt{2}}{3i\sqrt{3}}
Tauwehea te -27=\left(3i\right)^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{\left(3i\right)^{2}\times 3} hei hua o ngā pūtake rua \sqrt{\left(3i\right)^{2}}\sqrt{3}. Tuhia te pūtakerua o te \left(3i\right)^{2}.
\frac{\sqrt{2}}{\sqrt{3}\times \left(3i\right)^{0}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}\times \left(3i\right)^{0}}
Whakangāwaritia te tauraro o \frac{\sqrt{2}}{\sqrt{3}\times \left(3i\right)^{0}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\sqrt{2}\sqrt{3}}{3\times \left(3i\right)^{0}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\sqrt{6}}{3\times \left(3i\right)^{0}}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{6}}{3\times 1}
Tātaihia te 3i mā te pū o 0, kia riro ko 1.
\frac{\sqrt{6}}{3}
Whakareatia te 3 ki te 1, ka 3.