Whakaoti mō a
a = \frac{184507524947993258}{4996954135095479} = 36\frac{4617176084556004}{4996954135095479} \approx 36.923998092
Tohaina
Kua tāruatia ki te papatopenga
\frac{0.9993908270190958}{44} = \frac{0.8386705679454239}{a}
Evaluate trigonometric functions in the problem
a\times 0.9993908270190958=44\times 0.8386705679454239
Tē taea kia ōrite te tāupe a ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 44a, arā, te tauraro pātahi he tino iti rawa te kitea o 44,a.
a\times 0.9993908270190958=36.9015049895986516
Whakareatia te 44 ki te 0.8386705679454239, ka 36.9015049895986516.
a=\frac{36.9015049895986516}{0.9993908270190958}
Whakawehea ngā taha e rua ki te 0.9993908270190958.
a=\frac{369015049895986516}{9993908270190958}
Whakarohaina te \frac{36.9015049895986516}{0.9993908270190958} mā te whakarea i te taurunga me te tauraro ki te 10000000000000000.
a=\frac{184507524947993258}{4996954135095479}
Whakahekea te hautanga \frac{369015049895986516}{9993908270190958} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}