Whakaoti mō a
a=\frac{6008777540617299}{8125000000000000}\approx 0.739541851
Tohaina
Kua tāruatia ki te papatopenga
\frac{0.5150380749100542}{3.9} = \frac{a}{5.6}
Evaluate trigonometric functions in the problem
\frac{5150380749100542}{39000000000000000}=\frac{a}{5.6}
Whakarohaina te \frac{0.5150380749100542}{3.9} mā te whakarea i te taurunga me te tauraro ki te 10000000000000000.
\frac{858396791516757}{6500000000000000}=\frac{a}{5.6}
Whakahekea te hautanga \frac{5150380749100542}{39000000000000000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{a}{5.6}=\frac{858396791516757}{6500000000000000}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a=\frac{858396791516757}{6500000000000000}\times 5.6
Me whakarea ngā taha e rua ki te 5.6.
a=\frac{858396791516757}{6500000000000000}\times \frac{28}{5}
Me tahuri ki tau ā-ira 5.6 ki te hautau \frac{56}{10}. Whakahekea te hautanga \frac{56}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
a=\frac{858396791516757\times 28}{6500000000000000\times 5}
Me whakarea te \frac{858396791516757}{6500000000000000} ki te \frac{28}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
a=\frac{24035110162469196}{32500000000000000}
Mahia ngā whakarea i roto i te hautanga \frac{858396791516757\times 28}{6500000000000000\times 5}.
a=\frac{6008777540617299}{8125000000000000}
Whakahekea te hautanga \frac{24035110162469196}{32500000000000000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}