Whakaoti mō a
a = \frac{394534032110169660}{8064063186655591} = 48\frac{7458999150701296}{8064063186655591} \approx 48.924967845
Tohaina
Kua tāruatia ki te papatopenga
\frac{0.4383711467890774}{a} = \frac{0.24192189559966773}{3 \cdot 9}
Evaluate trigonometric functions in the problem
0.4383711467890774=\frac{1}{27}a\times 0.24192189559966773
Tē taea kia ōrite te tāupe a ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te a.
0.4383711467890774=\frac{1}{27}a\times \frac{24192189559966773}{100000000000000000}
Me tahuri ki tau ā-ira 0.24192189559966773 ki te hautau \frac{24192189559966773}{10000000000}. Whakahekea te hautanga \frac{24192189559966773}{10000000000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 1.
0.4383711467890774=\frac{1\times 24192189559966773}{27\times 100000000000000000}a
Me whakarea te \frac{1}{27} ki te \frac{24192189559966773}{100000000000000000} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
0.4383711467890774=\frac{24192189559966773}{2700000000000000000}a
Mahia ngā whakarea i roto i te hautanga \frac{1\times 24192189559966773}{27\times 100000000000000000}.
0.4383711467890774=\frac{8064063186655591}{900000000000000000}a
Whakahekea te hautanga \frac{24192189559966773}{2700000000000000000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{8064063186655591}{900000000000000000}a=0.4383711467890774
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a=0.4383711467890774\times \frac{900000000000000000}{8064063186655591}
Me whakarea ngā taha e rua ki te \frac{900000000000000000}{8064063186655591}, te tau utu o \frac{8064063186655591}{900000000000000000}.
a=\frac{2191855733945387}{5000000000000000}\times \frac{900000000000000000}{8064063186655591}
Me tahuri ki tau ā-ira 0.4383711467890774 ki te hautau \frac{2191855733945387}{10000000000}. Whakahekea te hautanga \frac{2191855733945387}{10000000000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 1.
a=\frac{2191855733945387\times 900000000000000000}{5000000000000000\times 8064063186655591}
Me whakarea te \frac{2191855733945387}{5000000000000000} ki te \frac{900000000000000000}{8064063186655591} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
a=\frac{1972670160550848300000000000000000}{40320315933277955000000000000000}
Mahia ngā whakarea i roto i te hautanga \frac{2191855733945387\times 900000000000000000}{5000000000000000\times 8064063186655591}.
a=\frac{394534032110169660}{8064063186655591}
Whakahekea te hautanga \frac{1972670160550848300000000000000000}{40320315933277955000000000000000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5000000000000000.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}