Whakaoti mō x
x = \frac{637004886440140}{42429351656151} = 15\frac{564611597875}{42429351656151} \approx 15.013307099
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{0.2588190451025211}{5} = \frac{0.7771459614569708}{x}
Evaluate trigonometric functions in the problem
x\times 0.2588190451025211=5\times 0.7771459614569708
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 5x, arā, te tauraro pātahi he tino iti rawa te kitea o 5,x.
x\times 0.2588190451025211=3.885729807284854
Whakareatia te 5 ki te 0.7771459614569708, ka 3.885729807284854.
x=\frac{3.885729807284854}{0.2588190451025211}
Whakawehea ngā taha e rua ki te 0.2588190451025211.
x=\frac{38857298072848540}{2588190451025211}
Whakarohaina te \frac{3.885729807284854}{0.2588190451025211} mā te whakarea i te taurunga me te tauraro ki te 10000000000000000.
x=\frac{637004886440140}{42429351656151}
Whakahekea te hautanga \frac{38857298072848540}{2588190451025211} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 61.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}