Aromātai
\frac{2870842171108398898530013049515629534691011490103339848511132534868303735795567}{1435421085554199603913161801050963338265039225752327084846636455870551582720000}\approx 2
Tohaina
Kua tāruatia ki te papatopenga
\frac{0.7431448254773941 ^ {2}}{0.7431448254773942 ^ {2}} + \frac{1.624269245482744}{1.6242692454827443} - \frac{0.8390996311772799 ^ {2}}{0.83909963117728 ^ {2}} + \sin(90) \cos(0)
Evaluate trigonometric functions in the problem
\frac{0.55226423163382653502897012671481}{0.7431448254773942^{2}}+\frac{1.624269245482744}{1.6242692454827443}-\frac{0.8390996311772799^{2}}{0.83909963117728^{2}}+\sin(90)\cos(0)
Tātaihia te 0.7431448254773941 mā te pū o 2, kia riro ko 0.55226423163382653502897012671481.
\frac{0.55226423163382653502897012671481}{0.55226423163382668365793522219364}+\frac{1.624269245482744}{1.6242692454827443}-\frac{0.8390996311772799^{2}}{0.83909963117728^{2}}+\sin(90)\cos(0)
Tātaihia te 0.7431448254773942 mā te pū o 2, kia riro ko 0.55226423163382668365793522219364.
\frac{55226423163382653502897012671481}{55226423163382668365793522219364}+\frac{1.624269245482744}{1.6242692454827443}-\frac{0.8390996311772799^{2}}{0.83909963117728^{2}}+\sin(90)\cos(0)
Whakarohaina te \frac{0.55226423163382653502897012671481}{0.55226423163382668365793522219364} mā te whakarea i te taurunga me te tauraro ki te 100000000000000000000000000000000.
\frac{55226423163382653502897012671481}{55226423163382668365793522219364}+\frac{16242692454827440}{16242692454827443}-\frac{0.8390996311772799^{2}}{0.83909963117728^{2}}+\sin(90)\cos(0)
Whakarohaina te \frac{1.624269245482744}{1.6242692454827443} mā te whakarea i te taurunga me te tauraro ki te 10000000000000000.
\frac{1794051613645965980589349118007741600064748801243}{897025806822983193841037800335142264885013206252}-\frac{0.8390996311772799^{2}}{0.83909963117728^{2}}+\sin(90)\cos(0)
Tāpirihia te \frac{55226423163382653502897012671481}{55226423163382668365793522219364} ki te \frac{16242692454827440}{16242692454827443}, ka \frac{1794051613645965980589349118007741600064748801243}{897025806822983193841037800335142264885013206252}.
\frac{1794051613645965980589349118007741600064748801243}{897025806822983193841037800335142264885013206252}-\frac{0.70408819104184715837886196294401}{0.83909963117728^{2}}+\sin(90)\cos(0)
Tātaihia te 0.8390996311772799 mā te pū o 2, kia riro ko 0.70408819104184715837886196294401.
\frac{1794051613645965980589349118007741600064748801243}{897025806822983193841037800335142264885013206252}-\frac{0.70408819104184715837886196294401}{0.7040881910418473261987881984}+\sin(90)\cos(0)
Tātaihia te 0.83909963117728 mā te pū o 2, kia riro ko 0.7040881910418473261987881984.
\frac{1794051613645965980589349118007741600064748801243}{897025806822983193841037800335142264885013206252}-\frac{70408819104184715837886196294401}{70408819104184732619878819840000}+\sin(90)\cos(0)
Whakarohaina te \frac{0.70408819104184715837886196294401}{0.7040881910418473261987881984} mā te whakarea i te taurunga me te tauraro ki te 100000000000000000000000000000000.
\frac{1435421085554199294616851248464666196425972264351012763664496078997752153075567}{1435421085554199603913161801050963338265039225752327084846636455870551582720000}+\sin(90)\cos(0)
Tangohia te \frac{70408819104184715837886196294401}{70408819104184732619878819840000} i te \frac{1794051613645965980589349118007741600064748801243}{897025806822983193841037800335142264885013206252}, ka \frac{1435421085554199294616851248464666196425972264351012763664496078997752153075567}{1435421085554199603913161801050963338265039225752327084846636455870551582720000}.
\frac{1435421085554199294616851248464666196425972264351012763664496078997752153075567}{1435421085554199603913161801050963338265039225752327084846636455870551582720000}+1\cos(0)
Tīkina te uara \sin(90) mai i te ripanga uara pākoki.
\frac{1435421085554199294616851248464666196425972264351012763664496078997752153075567}{1435421085554199603913161801050963338265039225752327084846636455870551582720000}+1\times 1
Tīkina te uara \cos(0) mai i te ripanga uara pākoki.
\frac{1435421085554199294616851248464666196425972264351012763664496078997752153075567}{1435421085554199603913161801050963338265039225752327084846636455870551582720000}+1
Whakareatia te 1 ki te 1, ka 1.
\frac{2870842171108398898530013049515629534691011490103339848511132534868303735795567}{1435421085554199603913161801050963338265039225752327084846636455870551582720000}
Tāpirihia te \frac{1435421085554199294616851248464666196425972264351012763664496078997752153075567}{1435421085554199603913161801050963338265039225752327084846636455870551582720000} ki te 1, ka \frac{2870842171108398898530013049515629534691011490103339848511132534868303735795567}{1435421085554199603913161801050963338265039225752327084846636455870551582720000}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}