Aromātai
-\frac{7}{y}
Whakaroha
-\frac{7}{y}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)}-\frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o y+7 me y-7 ko \left(y-7\right)\left(y+7\right). Whakareatia \frac{y}{y+7} ki te \frac{y-7}{y-7}. Whakareatia \frac{y}{y-7} ki te \frac{y+7}{y+7}.
\frac{\frac{y\left(y-7\right)-y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
Tā te mea he rite te tauraro o \frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)} me \frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{y^{2}-7y-y^{2}-7y}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
Mahia ngā whakarea i roto o y\left(y-7\right)-y\left(y+7\right).
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
Whakakotahitia ngā kupu rite i y^{2}-7y-y^{2}-7y.
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)}+\frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o y+7 me y-7 ko \left(y-7\right)\left(y+7\right). Whakareatia \frac{y}{y+7} ki te \frac{y-7}{y-7}. Whakareatia \frac{y}{y-7} ki te \frac{y+7}{y+7}.
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y\left(y-7\right)+y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}
Tā te mea he rite te tauraro o \frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)} me \frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y^{2}-7y+y^{2}+7y}{\left(y-7\right)\left(y+7\right)}}
Mahia ngā whakarea i roto o y\left(y-7\right)+y\left(y+7\right).
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{2y^{2}}{\left(y-7\right)\left(y+7\right)}}
Whakakotahitia ngā kupu rite i y^{2}-7y+y^{2}+7y.
\frac{-14y\left(y-7\right)\left(y+7\right)}{\left(y-7\right)\left(y+7\right)\times 2y^{2}}
Whakawehe \frac{-14y}{\left(y-7\right)\left(y+7\right)} ki te \frac{2y^{2}}{\left(y-7\right)\left(y+7\right)} mā te whakarea \frac{-14y}{\left(y-7\right)\left(y+7\right)} ki te tau huripoki o \frac{2y^{2}}{\left(y-7\right)\left(y+7\right)}.
\frac{-7}{y}
Me whakakore tahi te 2y\left(y-7\right)\left(y+7\right) i te taurunga me te tauraro.
\frac{\frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)}-\frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o y+7 me y-7 ko \left(y-7\right)\left(y+7\right). Whakareatia \frac{y}{y+7} ki te \frac{y-7}{y-7}. Whakareatia \frac{y}{y-7} ki te \frac{y+7}{y+7}.
\frac{\frac{y\left(y-7\right)-y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
Tā te mea he rite te tauraro o \frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)} me \frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{y^{2}-7y-y^{2}-7y}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
Mahia ngā whakarea i roto o y\left(y-7\right)-y\left(y+7\right).
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
Whakakotahitia ngā kupu rite i y^{2}-7y-y^{2}-7y.
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)}+\frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o y+7 me y-7 ko \left(y-7\right)\left(y+7\right). Whakareatia \frac{y}{y+7} ki te \frac{y-7}{y-7}. Whakareatia \frac{y}{y-7} ki te \frac{y+7}{y+7}.
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y\left(y-7\right)+y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}
Tā te mea he rite te tauraro o \frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)} me \frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y^{2}-7y+y^{2}+7y}{\left(y-7\right)\left(y+7\right)}}
Mahia ngā whakarea i roto o y\left(y-7\right)+y\left(y+7\right).
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{2y^{2}}{\left(y-7\right)\left(y+7\right)}}
Whakakotahitia ngā kupu rite i y^{2}-7y+y^{2}+7y.
\frac{-14y\left(y-7\right)\left(y+7\right)}{\left(y-7\right)\left(y+7\right)\times 2y^{2}}
Whakawehe \frac{-14y}{\left(y-7\right)\left(y+7\right)} ki te \frac{2y^{2}}{\left(y-7\right)\left(y+7\right)} mā te whakarea \frac{-14y}{\left(y-7\right)\left(y+7\right)} ki te tau huripoki o \frac{2y^{2}}{\left(y-7\right)\left(y+7\right)}.
\frac{-7}{y}
Me whakakore tahi te 2y\left(y-7\right)\left(y+7\right) i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}