Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x+y me x-y ko \left(x+y\right)\left(x-y\right). Whakareatia \frac{x-y}{x+y} ki te \frac{x-y}{x-y}. Whakareatia \frac{x+y}{x-y} ki te \frac{x+y}{x+y}.
\frac{\frac{\left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
Tā te mea he rite te tauraro o \frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} me \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
Mahia ngā whakarea i roto o \left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right).
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
Whakakotahitia ngā kupu rite i x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}
Tauwehea te x^{2}-y^{2}.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)}}
Tā te mea he rite te tauraro o \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} me \frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}}{\left(x+y\right)\left(x-y\right)}}
Mahia ngā whakarea i roto o \left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right).
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{xy}{\left(x+y\right)\left(x-y\right)}}
Whakakotahitia ngā kupu rite i x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}.
\frac{-4xy\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)xy}
Whakawehe \frac{-4xy}{\left(x+y\right)\left(x-y\right)} ki te \frac{xy}{\left(x+y\right)\left(x-y\right)} mā te whakarea \frac{-4xy}{\left(x+y\right)\left(x-y\right)} ki te tau huripoki o \frac{xy}{\left(x+y\right)\left(x-y\right)}.
-4
Me whakakore tahi te xy\left(x+y\right)\left(x-y\right) i te taurunga me te tauraro.