Aromātai
\frac{2\left(x+5\right)}{x+15}
Whakaroha
\frac{2\left(x+5\right)}{x+15}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)}+\frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x+15 me x-5 ko \left(x-5\right)\left(x+15\right). Whakareatia \frac{x-10}{x+15} ki te \frac{x-5}{x-5}. Whakareatia \frac{x-10}{x-5} ki te \frac{x+15}{x+15}.
\frac{\frac{\left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Tā te mea he rite te tauraro o \frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)} me \frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{x^{2}-5x-10x+50+x^{2}+15x-10x-150}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Mahia ngā whakarea i roto o \left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right).
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Whakakotahitia ngā kupu rite i x^{2}-5x-10x+50+x^{2}+15x-10x-150.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5}{x-5}-\frac{5}{x-5}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x-5}{x-5}.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5-5}{x-5}}
Tā te mea he rite te tauraro o \frac{x-5}{x-5} me \frac{5}{x-5}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-10}{x-5}}
Whakakotahitia ngā kupu rite i x-5-5.
\frac{\left(2x^{2}-10x-100\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)\left(x-10\right)}
Whakawehe \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} ki te \frac{x-10}{x-5} mā te whakarea \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} ki te tau huripoki o \frac{x-10}{x-5}.
\frac{2x^{2}-10x-100}{\left(x-10\right)\left(x+15\right)}
Me whakakore tahi te x-5 i te taurunga me te tauraro.
\frac{2\left(x-10\right)\left(x+5\right)}{\left(x-10\right)\left(x+15\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{2\left(x+5\right)}{x+15}
Me whakakore tahi te x-10 i te taurunga me te tauraro.
\frac{2x+10}{x+15}
Me whakaroha te kīanga.
\frac{\frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)}+\frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x+15 me x-5 ko \left(x-5\right)\left(x+15\right). Whakareatia \frac{x-10}{x+15} ki te \frac{x-5}{x-5}. Whakareatia \frac{x-10}{x-5} ki te \frac{x+15}{x+15}.
\frac{\frac{\left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Tā te mea he rite te tauraro o \frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)} me \frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{x^{2}-5x-10x+50+x^{2}+15x-10x-150}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Mahia ngā whakarea i roto o \left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right).
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Whakakotahitia ngā kupu rite i x^{2}-5x-10x+50+x^{2}+15x-10x-150.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5}{x-5}-\frac{5}{x-5}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x-5}{x-5}.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5-5}{x-5}}
Tā te mea he rite te tauraro o \frac{x-5}{x-5} me \frac{5}{x-5}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-10}{x-5}}
Whakakotahitia ngā kupu rite i x-5-5.
\frac{\left(2x^{2}-10x-100\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)\left(x-10\right)}
Whakawehe \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} ki te \frac{x-10}{x-5} mā te whakarea \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} ki te tau huripoki o \frac{x-10}{x-5}.
\frac{2x^{2}-10x-100}{\left(x-10\right)\left(x+15\right)}
Me whakakore tahi te x-5 i te taurunga me te tauraro.
\frac{2\left(x-10\right)\left(x+5\right)}{\left(x-10\right)\left(x+15\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{2\left(x+5\right)}{x+15}
Me whakakore tahi te x-10 i te taurunga me te tauraro.
\frac{2x+10}{x+15}
Me whakaroha te kīanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}