Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{x}{x+5}}{\frac{x}{x+5}+\frac{5\left(x+5\right)}{x+5}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 5 ki te \frac{x+5}{x+5}.
\frac{\frac{x}{x+5}}{\frac{x+5\left(x+5\right)}{x+5}}
Tā te mea he rite te tauraro o \frac{x}{x+5} me \frac{5\left(x+5\right)}{x+5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{x}{x+5}}{\frac{x+5x+25}{x+5}}
Mahia ngā whakarea i roto o x+5\left(x+5\right).
\frac{\frac{x}{x+5}}{\frac{6x+25}{x+5}}
Whakakotahitia ngā kupu rite i x+5x+25.
\frac{x\left(x+5\right)}{\left(x+5\right)\left(6x+25\right)}
Whakawehe \frac{x}{x+5} ki te \frac{6x+25}{x+5} mā te whakarea \frac{x}{x+5} ki te tau huripoki o \frac{6x+25}{x+5}.
\frac{x}{6x+25}
Me whakakore tahi te x+5 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x+5}}{\frac{x}{x+5}+\frac{5\left(x+5\right)}{x+5}})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 5 ki te \frac{x+5}{x+5}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x+5}}{\frac{x+5\left(x+5\right)}{x+5}})
Tā te mea he rite te tauraro o \frac{x}{x+5} me \frac{5\left(x+5\right)}{x+5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x+5}}{\frac{x+5x+25}{x+5}})
Mahia ngā whakarea i roto o x+5\left(x+5\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x+5}}{\frac{6x+25}{x+5}})
Whakakotahitia ngā kupu rite i x+5x+25.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+5\right)}{\left(x+5\right)\left(6x+25\right)})
Whakawehe \frac{x}{x+5} ki te \frac{6x+25}{x+5} mā te whakarea \frac{x}{x+5} ki te tau huripoki o \frac{6x+25}{x+5}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{6x+25})
Me whakakore tahi te x+5 i te taurunga me te tauraro.
\frac{\left(6x^{1}+25\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(6x^{1}+25)}{\left(6x^{1}+25\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(6x^{1}+25\right)x^{1-1}-x^{1}\times 6x^{1-1}}{\left(6x^{1}+25\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(6x^{1}+25\right)x^{0}-x^{1}\times 6x^{0}}{\left(6x^{1}+25\right)^{2}}
Mahia ngā tātaitanga.
\frac{6x^{1}x^{0}+25x^{0}-x^{1}\times 6x^{0}}{\left(6x^{1}+25\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{6x^{1}+25x^{0}-6x^{1}}{\left(6x^{1}+25\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{\left(6-6\right)x^{1}+25x^{0}}{\left(6x^{1}+25\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{25x^{0}}{\left(6x^{1}+25\right)^{2}}
Tango 6 mai i 6.
\frac{25x^{0}}{\left(6x+25\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{25\times 1}{\left(6x+25\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{25}{\left(6x+25\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.