Aromātai
x-5
Whakaroha
x-5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{xx}{5x}-\frac{5\times 5}{5x}}{\frac{1}{5}+\frac{1}{x}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5 me x ko 5x. Whakareatia \frac{x}{5} ki te \frac{x}{x}. Whakareatia \frac{5}{x} ki te \frac{5}{5}.
\frac{\frac{xx-5\times 5}{5x}}{\frac{1}{5}+\frac{1}{x}}
Tā te mea he rite te tauraro o \frac{xx}{5x} me \frac{5\times 5}{5x}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{x^{2}-25}{5x}}{\frac{1}{5}+\frac{1}{x}}
Mahia ngā whakarea i roto o xx-5\times 5.
\frac{\frac{x^{2}-25}{5x}}{\frac{x}{5x}+\frac{5}{5x}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5 me x ko 5x. Whakareatia \frac{1}{5} ki te \frac{x}{x}. Whakareatia \frac{1}{x} ki te \frac{5}{5}.
\frac{\frac{x^{2}-25}{5x}}{\frac{x+5}{5x}}
Tā te mea he rite te tauraro o \frac{x}{5x} me \frac{5}{5x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(x^{2}-25\right)\times 5x}{5x\left(x+5\right)}
Whakawehe \frac{x^{2}-25}{5x} ki te \frac{x+5}{5x} mā te whakarea \frac{x^{2}-25}{5x} ki te tau huripoki o \frac{x+5}{5x}.
\frac{x^{2}-25}{x+5}
Me whakakore tahi te 5x i te taurunga me te tauraro.
\frac{\left(x-5\right)\left(x+5\right)}{x+5}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
x-5
Me whakakore tahi te x+5 i te taurunga me te tauraro.
\frac{\frac{xx}{5x}-\frac{5\times 5}{5x}}{\frac{1}{5}+\frac{1}{x}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5 me x ko 5x. Whakareatia \frac{x}{5} ki te \frac{x}{x}. Whakareatia \frac{5}{x} ki te \frac{5}{5}.
\frac{\frac{xx-5\times 5}{5x}}{\frac{1}{5}+\frac{1}{x}}
Tā te mea he rite te tauraro o \frac{xx}{5x} me \frac{5\times 5}{5x}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{x^{2}-25}{5x}}{\frac{1}{5}+\frac{1}{x}}
Mahia ngā whakarea i roto o xx-5\times 5.
\frac{\frac{x^{2}-25}{5x}}{\frac{x}{5x}+\frac{5}{5x}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5 me x ko 5x. Whakareatia \frac{1}{5} ki te \frac{x}{x}. Whakareatia \frac{1}{x} ki te \frac{5}{5}.
\frac{\frac{x^{2}-25}{5x}}{\frac{x+5}{5x}}
Tā te mea he rite te tauraro o \frac{x}{5x} me \frac{5}{5x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(x^{2}-25\right)\times 5x}{5x\left(x+5\right)}
Whakawehe \frac{x^{2}-25}{5x} ki te \frac{x+5}{5x} mā te whakarea \frac{x^{2}-25}{5x} ki te tau huripoki o \frac{x+5}{5x}.
\frac{x^{2}-25}{x+5}
Me whakakore tahi te 5x i te taurunga me te tauraro.
\frac{\left(x-5\right)\left(x+5\right)}{x+5}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
x-5
Me whakakore tahi te x+5 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}