Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{x\times 3x^{2}}{6x^{2}y^{2}}+\frac{y\times 2y^{2}}{6x^{2}y^{2}}}{\frac{1}{6xy}+\frac{2}{x^{2}y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2y^{2} me 3x^{2} ko 6x^{2}y^{2}. Whakareatia \frac{x}{2y^{2}} ki te \frac{3x^{2}}{3x^{2}}. Whakareatia \frac{y}{3x^{2}} ki te \frac{2y^{2}}{2y^{2}}.
\frac{\frac{x\times 3x^{2}+y\times 2y^{2}}{6x^{2}y^{2}}}{\frac{1}{6xy}+\frac{2}{x^{2}y}}
Tā te mea he rite te tauraro o \frac{x\times 3x^{2}}{6x^{2}y^{2}} me \frac{y\times 2y^{2}}{6x^{2}y^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{1}{6xy}+\frac{2}{x^{2}y}}
Mahia ngā whakarea i roto o x\times 3x^{2}+y\times 2y^{2}.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{x}{6yx^{2}}+\frac{2\times 6}{6yx^{2}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 6xy me x^{2}y ko 6yx^{2}. Whakareatia \frac{1}{6xy} ki te \frac{x}{x}. Whakareatia \frac{2}{x^{2}y} ki te \frac{6}{6}.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{x+2\times 6}{6yx^{2}}}
Tā te mea he rite te tauraro o \frac{x}{6yx^{2}} me \frac{2\times 6}{6yx^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{x+12}{6yx^{2}}}
Mahia ngā whakarea i roto o x+2\times 6.
\frac{\left(3x^{3}+2y^{3}\right)\times 6yx^{2}}{6x^{2}y^{2}\left(x+12\right)}
Whakawehe \frac{3x^{3}+2y^{3}}{6x^{2}y^{2}} ki te \frac{x+12}{6yx^{2}} mā te whakarea \frac{3x^{3}+2y^{3}}{6x^{2}y^{2}} ki te tau huripoki o \frac{x+12}{6yx^{2}}.
\frac{3x^{3}+2y^{3}}{y\left(x+12\right)}
Me whakakore tahi te 6yx^{2} i te taurunga me te tauraro.
\frac{3x^{3}+2y^{3}}{yx+12y}
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te x+12.
\frac{\frac{x\times 3x^{2}}{6x^{2}y^{2}}+\frac{y\times 2y^{2}}{6x^{2}y^{2}}}{\frac{1}{6xy}+\frac{2}{x^{2}y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2y^{2} me 3x^{2} ko 6x^{2}y^{2}. Whakareatia \frac{x}{2y^{2}} ki te \frac{3x^{2}}{3x^{2}}. Whakareatia \frac{y}{3x^{2}} ki te \frac{2y^{2}}{2y^{2}}.
\frac{\frac{x\times 3x^{2}+y\times 2y^{2}}{6x^{2}y^{2}}}{\frac{1}{6xy}+\frac{2}{x^{2}y}}
Tā te mea he rite te tauraro o \frac{x\times 3x^{2}}{6x^{2}y^{2}} me \frac{y\times 2y^{2}}{6x^{2}y^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{1}{6xy}+\frac{2}{x^{2}y}}
Mahia ngā whakarea i roto o x\times 3x^{2}+y\times 2y^{2}.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{x}{6yx^{2}}+\frac{2\times 6}{6yx^{2}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 6xy me x^{2}y ko 6yx^{2}. Whakareatia \frac{1}{6xy} ki te \frac{x}{x}. Whakareatia \frac{2}{x^{2}y} ki te \frac{6}{6}.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{x+2\times 6}{6yx^{2}}}
Tā te mea he rite te tauraro o \frac{x}{6yx^{2}} me \frac{2\times 6}{6yx^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{x+12}{6yx^{2}}}
Mahia ngā whakarea i roto o x+2\times 6.
\frac{\left(3x^{3}+2y^{3}\right)\times 6yx^{2}}{6x^{2}y^{2}\left(x+12\right)}
Whakawehe \frac{3x^{3}+2y^{3}}{6x^{2}y^{2}} ki te \frac{x+12}{6yx^{2}} mā te whakarea \frac{3x^{3}+2y^{3}}{6x^{2}y^{2}} ki te tau huripoki o \frac{x+12}{6yx^{2}}.
\frac{3x^{3}+2y^{3}}{y\left(x+12\right)}
Me whakakore tahi te 6yx^{2} i te taurunga me te tauraro.
\frac{3x^{3}+2y^{3}}{yx+12y}
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te x+12.