Aromātai
\frac{4p}{500-p}
Whakaroha
-\frac{4p}{p-500}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{pN}{100}}{\frac{p}{100}N+\frac{5}{4}\times \frac{100-p}{100}N}
Tuhia te \frac{p}{100}N hei hautanga kotahi.
\frac{\frac{pN}{100}}{\frac{pN}{100}+\frac{5}{4}\times \frac{100-p}{100}N}
Tuhia te \frac{p}{100}N hei hautanga kotahi.
\frac{\frac{pN}{100}}{\frac{pN}{100}+\frac{5\left(100-p\right)}{4\times 100}N}
Me whakarea te \frac{5}{4} ki te \frac{100-p}{100} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{pN}{100}}{\frac{pN}{100}+\frac{-p+100}{4\times 20}N}
Me whakakore tahi te 5 i te taurunga me te tauraro.
\frac{\frac{pN}{100}}{\frac{pN}{100}+\frac{\left(-p+100\right)N}{4\times 20}}
Tuhia te \frac{-p+100}{4\times 20}N hei hautanga kotahi.
\frac{\frac{pN}{100}}{\frac{4pN}{400}+\frac{5\left(-p+100\right)N}{400}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 100 me 4\times 20 ko 400. Whakareatia \frac{pN}{100} ki te \frac{4}{4}. Whakareatia \frac{\left(-p+100\right)N}{4\times 20} ki te \frac{5}{5}.
\frac{\frac{pN}{100}}{\frac{4pN+5\left(-p+100\right)N}{400}}
Tā te mea he rite te tauraro o \frac{4pN}{400} me \frac{5\left(-p+100\right)N}{400}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{pN}{100}}{\frac{4pN-5pN+500N}{400}}
Mahia ngā whakarea i roto o 4pN+5\left(-p+100\right)N.
\frac{\frac{pN}{100}}{\frac{-pN+500N}{400}}
Whakakotahitia ngā kupu rite i 4pN-5pN+500N.
\frac{pN\times 400}{100\left(-pN+500N\right)}
Whakawehe \frac{pN}{100} ki te \frac{-pN+500N}{400} mā te whakarea \frac{pN}{100} ki te tau huripoki o \frac{-pN+500N}{400}.
\frac{4Np}{-Np+500N}
Me whakakore tahi te 100 i te taurunga me te tauraro.
\frac{4Np}{N\left(-p+500\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{4p}{-p+500}
Me whakakore tahi te N i te taurunga me te tauraro.
\frac{\frac{pN}{100}}{\frac{p}{100}N+\frac{5}{4}\times \frac{100-p}{100}N}
Tuhia te \frac{p}{100}N hei hautanga kotahi.
\frac{\frac{pN}{100}}{\frac{pN}{100}+\frac{5}{4}\times \frac{100-p}{100}N}
Tuhia te \frac{p}{100}N hei hautanga kotahi.
\frac{\frac{pN}{100}}{\frac{pN}{100}+\frac{5\left(100-p\right)}{4\times 100}N}
Me whakarea te \frac{5}{4} ki te \frac{100-p}{100} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{pN}{100}}{\frac{pN}{100}+\frac{-p+100}{4\times 20}N}
Me whakakore tahi te 5 i te taurunga me te tauraro.
\frac{\frac{pN}{100}}{\frac{pN}{100}+\frac{\left(-p+100\right)N}{4\times 20}}
Tuhia te \frac{-p+100}{4\times 20}N hei hautanga kotahi.
\frac{\frac{pN}{100}}{\frac{4pN}{400}+\frac{5\left(-p+100\right)N}{400}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 100 me 4\times 20 ko 400. Whakareatia \frac{pN}{100} ki te \frac{4}{4}. Whakareatia \frac{\left(-p+100\right)N}{4\times 20} ki te \frac{5}{5}.
\frac{\frac{pN}{100}}{\frac{4pN+5\left(-p+100\right)N}{400}}
Tā te mea he rite te tauraro o \frac{4pN}{400} me \frac{5\left(-p+100\right)N}{400}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{pN}{100}}{\frac{4pN-5pN+500N}{400}}
Mahia ngā whakarea i roto o 4pN+5\left(-p+100\right)N.
\frac{\frac{pN}{100}}{\frac{-pN+500N}{400}}
Whakakotahitia ngā kupu rite i 4pN-5pN+500N.
\frac{pN\times 400}{100\left(-pN+500N\right)}
Whakawehe \frac{pN}{100} ki te \frac{-pN+500N}{400} mā te whakarea \frac{pN}{100} ki te tau huripoki o \frac{-pN+500N}{400}.
\frac{4Np}{-Np+500N}
Me whakakore tahi te 100 i te taurunga me te tauraro.
\frac{4Np}{N\left(-p+500\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{4p}{-p+500}
Me whakakore tahi te N i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}