Aromātai
m+3
Whakaroha
m+3
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{mm}{2m}+\frac{8m+15}{2m}}{\frac{1}{2}+\frac{5}{2m}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 2m ko 2m. Whakareatia \frac{m}{2} ki te \frac{m}{m}.
\frac{\frac{mm+8m+15}{2m}}{\frac{1}{2}+\frac{5}{2m}}
Tā te mea he rite te tauraro o \frac{mm}{2m} me \frac{8m+15}{2m}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{m^{2}+8m+15}{2m}}{\frac{1}{2}+\frac{5}{2m}}
Mahia ngā whakarea i roto o mm+8m+15.
\frac{\frac{m^{2}+8m+15}{2m}}{\frac{m}{2m}+\frac{5}{2m}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 2m ko 2m. Whakareatia \frac{1}{2} ki te \frac{m}{m}.
\frac{\frac{m^{2}+8m+15}{2m}}{\frac{m+5}{2m}}
Tā te mea he rite te tauraro o \frac{m}{2m} me \frac{5}{2m}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(m^{2}+8m+15\right)\times 2m}{2m\left(m+5\right)}
Whakawehe \frac{m^{2}+8m+15}{2m} ki te \frac{m+5}{2m} mā te whakarea \frac{m^{2}+8m+15}{2m} ki te tau huripoki o \frac{m+5}{2m}.
\frac{m^{2}+8m+15}{m+5}
Me whakakore tahi te 2m i te taurunga me te tauraro.
\frac{\left(m+3\right)\left(m+5\right)}{m+5}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
m+3
Me whakakore tahi te m+5 i te taurunga me te tauraro.
\frac{\frac{mm}{2m}+\frac{8m+15}{2m}}{\frac{1}{2}+\frac{5}{2m}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 2m ko 2m. Whakareatia \frac{m}{2} ki te \frac{m}{m}.
\frac{\frac{mm+8m+15}{2m}}{\frac{1}{2}+\frac{5}{2m}}
Tā te mea he rite te tauraro o \frac{mm}{2m} me \frac{8m+15}{2m}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{m^{2}+8m+15}{2m}}{\frac{1}{2}+\frac{5}{2m}}
Mahia ngā whakarea i roto o mm+8m+15.
\frac{\frac{m^{2}+8m+15}{2m}}{\frac{m}{2m}+\frac{5}{2m}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 2m ko 2m. Whakareatia \frac{1}{2} ki te \frac{m}{m}.
\frac{\frac{m^{2}+8m+15}{2m}}{\frac{m+5}{2m}}
Tā te mea he rite te tauraro o \frac{m}{2m} me \frac{5}{2m}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(m^{2}+8m+15\right)\times 2m}{2m\left(m+5\right)}
Whakawehe \frac{m^{2}+8m+15}{2m} ki te \frac{m+5}{2m} mā te whakarea \frac{m^{2}+8m+15}{2m} ki te tau huripoki o \frac{m+5}{2m}.
\frac{m^{2}+8m+15}{m+5}
Me whakakore tahi te 2m i te taurunga me te tauraro.
\frac{\left(m+3\right)\left(m+5\right)}{m+5}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
m+3
Me whakakore tahi te m+5 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}