Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{mm}{2m}+\frac{8m+15}{2m}}{\frac{1}{2}+\frac{5}{2m}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 2m ko 2m. Whakareatia \frac{m}{2} ki te \frac{m}{m}.
\frac{\frac{mm+8m+15}{2m}}{\frac{1}{2}+\frac{5}{2m}}
Tā te mea he rite te tauraro o \frac{mm}{2m} me \frac{8m+15}{2m}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{m^{2}+8m+15}{2m}}{\frac{1}{2}+\frac{5}{2m}}
Mahia ngā whakarea i roto o mm+8m+15.
\frac{\frac{m^{2}+8m+15}{2m}}{\frac{m}{2m}+\frac{5}{2m}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 2m ko 2m. Whakareatia \frac{1}{2} ki te \frac{m}{m}.
\frac{\frac{m^{2}+8m+15}{2m}}{\frac{m+5}{2m}}
Tā te mea he rite te tauraro o \frac{m}{2m} me \frac{5}{2m}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(m^{2}+8m+15\right)\times 2m}{2m\left(m+5\right)}
Whakawehe \frac{m^{2}+8m+15}{2m} ki te \frac{m+5}{2m} mā te whakarea \frac{m^{2}+8m+15}{2m} ki te tau huripoki o \frac{m+5}{2m}.
\frac{m^{2}+8m+15}{m+5}
Me whakakore tahi te 2m i te taurunga me te tauraro.
\frac{\left(m+3\right)\left(m+5\right)}{m+5}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
m+3
Me whakakore tahi te m+5 i te taurunga me te tauraro.
\frac{\frac{mm}{2m}+\frac{8m+15}{2m}}{\frac{1}{2}+\frac{5}{2m}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 2m ko 2m. Whakareatia \frac{m}{2} ki te \frac{m}{m}.
\frac{\frac{mm+8m+15}{2m}}{\frac{1}{2}+\frac{5}{2m}}
Tā te mea he rite te tauraro o \frac{mm}{2m} me \frac{8m+15}{2m}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{m^{2}+8m+15}{2m}}{\frac{1}{2}+\frac{5}{2m}}
Mahia ngā whakarea i roto o mm+8m+15.
\frac{\frac{m^{2}+8m+15}{2m}}{\frac{m}{2m}+\frac{5}{2m}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 2m ko 2m. Whakareatia \frac{1}{2} ki te \frac{m}{m}.
\frac{\frac{m^{2}+8m+15}{2m}}{\frac{m+5}{2m}}
Tā te mea he rite te tauraro o \frac{m}{2m} me \frac{5}{2m}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(m^{2}+8m+15\right)\times 2m}{2m\left(m+5\right)}
Whakawehe \frac{m^{2}+8m+15}{2m} ki te \frac{m+5}{2m} mā te whakarea \frac{m^{2}+8m+15}{2m} ki te tau huripoki o \frac{m+5}{2m}.
\frac{m^{2}+8m+15}{m+5}
Me whakakore tahi te 2m i te taurunga me te tauraro.
\frac{\left(m+3\right)\left(m+5\right)}{m+5}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
m+3
Me whakakore tahi te m+5 i te taurunga me te tauraro.