Aromātai
\frac{a\left(a-b\right)}{b\left(a+b\right)}
Whakaroha
\frac{a^{2}-ab}{b\left(a+b\right)}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{a}{b}-1}{1+\frac{b}{a}}
Whakawehea te a ki te a, kia riro ko 1.
\frac{\frac{a}{b}-\frac{b}{b}}{1+\frac{b}{a}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{b}{b}.
\frac{\frac{a-b}{b}}{1+\frac{b}{a}}
Tā te mea he rite te tauraro o \frac{a}{b} me \frac{b}{b}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{a-b}{b}}{\frac{a}{a}+\frac{b}{a}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{a}{a}.
\frac{\frac{a-b}{b}}{\frac{a+b}{a}}
Tā te mea he rite te tauraro o \frac{a}{a} me \frac{b}{a}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(a-b\right)a}{b\left(a+b\right)}
Whakawehe \frac{a-b}{b} ki te \frac{a+b}{a} mā te whakarea \frac{a-b}{b} ki te tau huripoki o \frac{a+b}{a}.
\frac{a^{2}-ba}{b\left(a+b\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te a-b ki te a.
\frac{a^{2}-ba}{ba+b^{2}}
Whakamahia te āhuatanga tohatoha hei whakarea te b ki te a+b.
\frac{\frac{a}{b}-1}{1+\frac{b}{a}}
Whakawehea te a ki te a, kia riro ko 1.
\frac{\frac{a}{b}-\frac{b}{b}}{1+\frac{b}{a}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{b}{b}.
\frac{\frac{a-b}{b}}{1+\frac{b}{a}}
Tā te mea he rite te tauraro o \frac{a}{b} me \frac{b}{b}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{a-b}{b}}{\frac{a}{a}+\frac{b}{a}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{a}{a}.
\frac{\frac{a-b}{b}}{\frac{a+b}{a}}
Tā te mea he rite te tauraro o \frac{a}{a} me \frac{b}{a}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(a-b\right)a}{b\left(a+b\right)}
Whakawehe \frac{a-b}{b} ki te \frac{a+b}{a} mā te whakarea \frac{a-b}{b} ki te tau huripoki o \frac{a+b}{a}.
\frac{a^{2}-ba}{b\left(a+b\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te a-b ki te a.
\frac{a^{2}-ba}{ba+b^{2}}
Whakamahia te āhuatanga tohatoha hei whakarea te b ki te a+b.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}