Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{a\left(a+2\right)}{\left(a^{2}-4\right)a^{2}}
Whakawehe \frac{a}{a^{2}-4} ki te \frac{a^{2}}{a+2} mā te whakarea \frac{a}{a^{2}-4} ki te tau huripoki o \frac{a^{2}}{a+2}.
\frac{a+2}{a\left(a^{2}-4\right)}
Me whakakore tahi te a i te taurunga me te tauraro.
\frac{a+2}{a\left(a-2\right)\left(a+2\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{1}{a\left(a-2\right)}
Me whakakore tahi te a+2 i te taurunga me te tauraro.
\frac{1}{a^{2}-2a}
Me whakaroha te kīanga.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a+2\right)}{\left(a^{2}-4\right)a^{2}})
Whakawehe \frac{a}{a^{2}-4} ki te \frac{a^{2}}{a+2} mā te whakarea \frac{a}{a^{2}-4} ki te tau huripoki o \frac{a^{2}}{a+2}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a+2}{a\left(a^{2}-4\right)})
Me whakakore tahi te a i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a+2}{a\left(a-2\right)\left(a+2\right)})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{a+2}{a\left(a^{2}-4\right)}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a\left(a-2\right)})
Me whakakore tahi te a+2 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a^{2}-2a})
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te a-2.
-\left(a^{2}-2a^{1}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{2}-2a^{1})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(a^{2}-2a^{1}\right)^{-2}\left(2a^{2-1}-2a^{1-1}\right)
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\left(a^{2}-2a^{1}\right)^{-2}\left(-2a^{1}+2a^{0}\right)
Whakarūnātia.
\left(a^{2}-2a\right)^{-2}\left(-2a+2a^{0}\right)
Mō tētahi kupu t, t^{1}=t.
\left(a^{2}-2a\right)^{-2}\left(-2a+2\times 1\right)
Mō tētahi kupu t mahue te 0, t^{0}=1.
\left(a^{2}-2a\right)^{-2}\left(-2a+2\right)
Mō tētahi kupu t, t\times 1=t me 1t=t.