Aromātai
\frac{1}{a\left(a-2\right)}
Kimi Pārōnaki e ai ki a
\frac{2\left(1-a\right)}{\left(a\left(a-2\right)\right)^{2}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{a\left(a+2\right)}{\left(a^{2}-4\right)a^{2}}
Whakawehe \frac{a}{a^{2}-4} ki te \frac{a^{2}}{a+2} mā te whakarea \frac{a}{a^{2}-4} ki te tau huripoki o \frac{a^{2}}{a+2}.
\frac{a+2}{a\left(a^{2}-4\right)}
Me whakakore tahi te a i te taurunga me te tauraro.
\frac{a+2}{a\left(a-2\right)\left(a+2\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{1}{a\left(a-2\right)}
Me whakakore tahi te a+2 i te taurunga me te tauraro.
\frac{1}{a^{2}-2a}
Me whakaroha te kīanga.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a+2\right)}{\left(a^{2}-4\right)a^{2}})
Whakawehe \frac{a}{a^{2}-4} ki te \frac{a^{2}}{a+2} mā te whakarea \frac{a}{a^{2}-4} ki te tau huripoki o \frac{a^{2}}{a+2}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a+2}{a\left(a^{2}-4\right)})
Me whakakore tahi te a i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a+2}{a\left(a-2\right)\left(a+2\right)})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{a+2}{a\left(a^{2}-4\right)}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a\left(a-2\right)})
Me whakakore tahi te a+2 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a^{2}-2a})
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te a-2.
-\left(a^{2}-2a^{1}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{2}-2a^{1})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(a^{2}-2a^{1}\right)^{-2}\left(2a^{2-1}-2a^{1-1}\right)
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\left(a^{2}-2a^{1}\right)^{-2}\left(-2a^{1}+2a^{0}\right)
Whakarūnātia.
\left(a^{2}-2a\right)^{-2}\left(-2a+2a^{0}\right)
Mō tētahi kupu t, t^{1}=t.
\left(a^{2}-2a\right)^{-2}\left(-2a+2\times 1\right)
Mō tētahi kupu t mahue te 0, t^{0}=1.
\left(a^{2}-2a\right)^{-2}\left(-2a+2\right)
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}