Aromātai
\frac{49}{60}\approx 0.816666667
Tauwehe
\frac{7 ^ {2}}{2 ^ {2} \cdot 3 \cdot 5} = 0.8166666666666667
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{40}{45}+\frac{9}{45}}{\frac{5}{6}+\frac{1}{2}}
Ko te maha noa iti rawa atu o 9 me 5 ko 45. Me tahuri \frac{8}{9} me \frac{1}{5} ki te hautau me te tautūnga 45.
\frac{\frac{40+9}{45}}{\frac{5}{6}+\frac{1}{2}}
Tā te mea he rite te tauraro o \frac{40}{45} me \frac{9}{45}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{49}{45}}{\frac{5}{6}+\frac{1}{2}}
Tāpirihia te 40 ki te 9, ka 49.
\frac{\frac{49}{45}}{\frac{5}{6}+\frac{3}{6}}
Ko te maha noa iti rawa atu o 6 me 2 ko 6. Me tahuri \frac{5}{6} me \frac{1}{2} ki te hautau me te tautūnga 6.
\frac{\frac{49}{45}}{\frac{5+3}{6}}
Tā te mea he rite te tauraro o \frac{5}{6} me \frac{3}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{49}{45}}{\frac{8}{6}}
Tāpirihia te 5 ki te 3, ka 8.
\frac{\frac{49}{45}}{\frac{4}{3}}
Whakahekea te hautanga \frac{8}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{49}{45}\times \frac{3}{4}
Whakawehe \frac{49}{45} ki te \frac{4}{3} mā te whakarea \frac{49}{45} ki te tau huripoki o \frac{4}{3}.
\frac{49\times 3}{45\times 4}
Me whakarea te \frac{49}{45} ki te \frac{3}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{147}{180}
Mahia ngā whakarea i roto i te hautanga \frac{49\times 3}{45\times 4}.
\frac{49}{60}
Whakahekea te hautanga \frac{147}{180} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}