Aromātai
\frac{640}{9}\approx 71.111111111
Tauwehe
\frac{2 ^ {7} \cdot 5}{3 ^ {2}} = 71\frac{1}{9} = 71.11111111111111
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{8\times 2}{3}}{\frac{1}{2}\times \frac{3}{2}}\times 4\times \frac{15}{2}\times \frac{1}{3}
Tuhia te \frac{8}{3}\times 2 hei hautanga kotahi.
\frac{\frac{16}{3}}{\frac{1}{2}\times \frac{3}{2}}\times 4\times \frac{15}{2}\times \frac{1}{3}
Whakareatia te 8 ki te 2, ka 16.
\frac{\frac{16}{3}}{\frac{1\times 3}{2\times 2}}\times 4\times \frac{15}{2}\times \frac{1}{3}
Me whakarea te \frac{1}{2} ki te \frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{16}{3}}{\frac{3}{4}}\times 4\times \frac{15}{2}\times \frac{1}{3}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 3}{2\times 2}.
\frac{16}{3}\times \frac{4}{3}\times 4\times \frac{15}{2}\times \frac{1}{3}
Whakawehe \frac{16}{3} ki te \frac{3}{4} mā te whakarea \frac{16}{3} ki te tau huripoki o \frac{3}{4}.
\frac{16\times 4}{3\times 3}\times 4\times \frac{15}{2}\times \frac{1}{3}
Me whakarea te \frac{16}{3} ki te \frac{4}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{64}{9}\times 4\times \frac{15}{2}\times \frac{1}{3}
Mahia ngā whakarea i roto i te hautanga \frac{16\times 4}{3\times 3}.
\frac{64\times 4}{9}\times \frac{15}{2}\times \frac{1}{3}
Tuhia te \frac{64}{9}\times 4 hei hautanga kotahi.
\frac{256}{9}\times \frac{15}{2}\times \frac{1}{3}
Whakareatia te 64 ki te 4, ka 256.
\frac{256\times 15}{9\times 2}\times \frac{1}{3}
Me whakarea te \frac{256}{9} ki te \frac{15}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3840}{18}\times \frac{1}{3}
Mahia ngā whakarea i roto i te hautanga \frac{256\times 15}{9\times 2}.
\frac{640}{3}\times \frac{1}{3}
Whakahekea te hautanga \frac{3840}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{640\times 1}{3\times 3}
Me whakarea te \frac{640}{3} ki te \frac{1}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{640}{9}
Mahia ngā whakarea i roto i te hautanga \frac{640\times 1}{3\times 3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}