Aromātai
\frac{35}{36}\approx 0.972222222
Tauwehe
\frac{5 \cdot 7}{2 ^ {2} \cdot 3 ^ {2}} = 0.9722222222222222
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{7}{8}+\frac{4+1}{4}-\frac{3}{2}\times \frac{4}{9}}{\frac{2\times 2+1}{2}-\frac{1\times 10+1}{10}+\frac{1}{14}\times \frac{7}{5}}
Whakareatia te 1 ki te 4, ka 4.
\frac{\frac{7}{8}+\frac{5}{4}-\frac{3}{2}\times \frac{4}{9}}{\frac{2\times 2+1}{2}-\frac{1\times 10+1}{10}+\frac{1}{14}\times \frac{7}{5}}
Tāpirihia te 4 ki te 1, ka 5.
\frac{\frac{7}{8}+\frac{10}{8}-\frac{3}{2}\times \frac{4}{9}}{\frac{2\times 2+1}{2}-\frac{1\times 10+1}{10}+\frac{1}{14}\times \frac{7}{5}}
Ko te maha noa iti rawa atu o 8 me 4 ko 8. Me tahuri \frac{7}{8} me \frac{5}{4} ki te hautau me te tautūnga 8.
\frac{\frac{7+10}{8}-\frac{3}{2}\times \frac{4}{9}}{\frac{2\times 2+1}{2}-\frac{1\times 10+1}{10}+\frac{1}{14}\times \frac{7}{5}}
Tā te mea he rite te tauraro o \frac{7}{8} me \frac{10}{8}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{17}{8}-\frac{3}{2}\times \frac{4}{9}}{\frac{2\times 2+1}{2}-\frac{1\times 10+1}{10}+\frac{1}{14}\times \frac{7}{5}}
Tāpirihia te 7 ki te 10, ka 17.
\frac{\frac{17}{8}-\frac{3\times 4}{2\times 9}}{\frac{2\times 2+1}{2}-\frac{1\times 10+1}{10}+\frac{1}{14}\times \frac{7}{5}}
Me whakarea te \frac{3}{2} ki te \frac{4}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{17}{8}-\frac{12}{18}}{\frac{2\times 2+1}{2}-\frac{1\times 10+1}{10}+\frac{1}{14}\times \frac{7}{5}}
Mahia ngā whakarea i roto i te hautanga \frac{3\times 4}{2\times 9}.
\frac{\frac{17}{8}-\frac{2}{3}}{\frac{2\times 2+1}{2}-\frac{1\times 10+1}{10}+\frac{1}{14}\times \frac{7}{5}}
Whakahekea te hautanga \frac{12}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{\frac{51}{24}-\frac{16}{24}}{\frac{2\times 2+1}{2}-\frac{1\times 10+1}{10}+\frac{1}{14}\times \frac{7}{5}}
Ko te maha noa iti rawa atu o 8 me 3 ko 24. Me tahuri \frac{17}{8} me \frac{2}{3} ki te hautau me te tautūnga 24.
\frac{\frac{51-16}{24}}{\frac{2\times 2+1}{2}-\frac{1\times 10+1}{10}+\frac{1}{14}\times \frac{7}{5}}
Tā te mea he rite te tauraro o \frac{51}{24} me \frac{16}{24}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{35}{24}}{\frac{2\times 2+1}{2}-\frac{1\times 10+1}{10}+\frac{1}{14}\times \frac{7}{5}}
Tangohia te 16 i te 51, ka 35.
\frac{\frac{35}{24}}{\frac{4+1}{2}-\frac{1\times 10+1}{10}+\frac{1}{14}\times \frac{7}{5}}
Whakareatia te 2 ki te 2, ka 4.
\frac{\frac{35}{24}}{\frac{5}{2}-\frac{1\times 10+1}{10}+\frac{1}{14}\times \frac{7}{5}}
Tāpirihia te 4 ki te 1, ka 5.
\frac{\frac{35}{24}}{\frac{5}{2}-\frac{10+1}{10}+\frac{1}{14}\times \frac{7}{5}}
Whakareatia te 1 ki te 10, ka 10.
\frac{\frac{35}{24}}{\frac{5}{2}-\frac{11}{10}+\frac{1}{14}\times \frac{7}{5}}
Tāpirihia te 10 ki te 1, ka 11.
\frac{\frac{35}{24}}{\frac{25}{10}-\frac{11}{10}+\frac{1}{14}\times \frac{7}{5}}
Ko te maha noa iti rawa atu o 2 me 10 ko 10. Me tahuri \frac{5}{2} me \frac{11}{10} ki te hautau me te tautūnga 10.
\frac{\frac{35}{24}}{\frac{25-11}{10}+\frac{1}{14}\times \frac{7}{5}}
Tā te mea he rite te tauraro o \frac{25}{10} me \frac{11}{10}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{35}{24}}{\frac{14}{10}+\frac{1}{14}\times \frac{7}{5}}
Tangohia te 11 i te 25, ka 14.
\frac{\frac{35}{24}}{\frac{7}{5}+\frac{1}{14}\times \frac{7}{5}}
Whakahekea te hautanga \frac{14}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{35}{24}}{\frac{7}{5}+\frac{1\times 7}{14\times 5}}
Me whakarea te \frac{1}{14} ki te \frac{7}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{35}{24}}{\frac{7}{5}+\frac{7}{70}}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 7}{14\times 5}.
\frac{\frac{35}{24}}{\frac{7}{5}+\frac{1}{10}}
Whakahekea te hautanga \frac{7}{70} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
\frac{\frac{35}{24}}{\frac{14}{10}+\frac{1}{10}}
Ko te maha noa iti rawa atu o 5 me 10 ko 10. Me tahuri \frac{7}{5} me \frac{1}{10} ki te hautau me te tautūnga 10.
\frac{\frac{35}{24}}{\frac{14+1}{10}}
Tā te mea he rite te tauraro o \frac{14}{10} me \frac{1}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{35}{24}}{\frac{15}{10}}
Tāpirihia te 14 ki te 1, ka 15.
\frac{\frac{35}{24}}{\frac{3}{2}}
Whakahekea te hautanga \frac{15}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{35}{24}\times \frac{2}{3}
Whakawehe \frac{35}{24} ki te \frac{3}{2} mā te whakarea \frac{35}{24} ki te tau huripoki o \frac{3}{2}.
\frac{35\times 2}{24\times 3}
Me whakarea te \frac{35}{24} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{70}{72}
Mahia ngā whakarea i roto i te hautanga \frac{35\times 2}{24\times 3}.
\frac{35}{36}
Whakahekea te hautanga \frac{70}{72} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}