Aromātai
-\frac{15}{14}\approx -1.071428571
Tauwehe
-\frac{15}{14} = -1\frac{1}{14} = -1.0714285714285714
Pātaitai
Arithmetic
\frac { \frac { 7 } { 4 } - \frac { 2 } { 2 } } { \frac { 4 } { 5 } - \frac { 3 } { 2 } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{7}{4}-1}{\frac{4}{5}-\frac{3}{2}}
Whakawehea te 2 ki te 2, kia riro ko 1.
\frac{\frac{7}{4}-\frac{4}{4}}{\frac{4}{5}-\frac{3}{2}}
Me tahuri te 1 ki te hautau \frac{4}{4}.
\frac{\frac{7-4}{4}}{\frac{4}{5}-\frac{3}{2}}
Tā te mea he rite te tauraro o \frac{7}{4} me \frac{4}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{3}{4}}{\frac{4}{5}-\frac{3}{2}}
Tangohia te 4 i te 7, ka 3.
\frac{\frac{3}{4}}{\frac{8}{10}-\frac{15}{10}}
Ko te maha noa iti rawa atu o 5 me 2 ko 10. Me tahuri \frac{4}{5} me \frac{3}{2} ki te hautau me te tautūnga 10.
\frac{\frac{3}{4}}{\frac{8-15}{10}}
Tā te mea he rite te tauraro o \frac{8}{10} me \frac{15}{10}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{3}{4}}{-\frac{7}{10}}
Tangohia te 15 i te 8, ka -7.
\frac{3}{4}\left(-\frac{10}{7}\right)
Whakawehe \frac{3}{4} ki te -\frac{7}{10} mā te whakarea \frac{3}{4} ki te tau huripoki o -\frac{7}{10}.
\frac{3\left(-10\right)}{4\times 7}
Me whakarea te \frac{3}{4} ki te -\frac{10}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-30}{28}
Mahia ngā whakarea i roto i te hautanga \frac{3\left(-10\right)}{4\times 7}.
-\frac{15}{14}
Whakahekea te hautanga \frac{-30}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}