Aromātai
\frac{9-\sqrt{17}}{256}\approx 0.019050369
Tohaina
Kua tāruatia ki te papatopenga
\frac{6}{\left(3\sqrt{17}+27\right)\times 8}
Tuhia te \frac{\frac{6}{3\sqrt{17}+27}}{8} hei hautanga kotahi.
\frac{6}{24\sqrt{17}+216}
Whakamahia te āhuatanga tohatoha hei whakarea te 3\sqrt{17}+27 ki te 8.
\frac{6\left(24\sqrt{17}-216\right)}{\left(24\sqrt{17}+216\right)\left(24\sqrt{17}-216\right)}
Whakangāwaritia te tauraro o \frac{6}{24\sqrt{17}+216} mā te whakarea i te taurunga me te tauraro ki te 24\sqrt{17}-216.
\frac{6\left(24\sqrt{17}-216\right)}{\left(24\sqrt{17}\right)^{2}-216^{2}}
Whakaarohia te \left(24\sqrt{17}+216\right)\left(24\sqrt{17}-216\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6\left(24\sqrt{17}-216\right)}{24^{2}\left(\sqrt{17}\right)^{2}-216^{2}}
Whakarohaina te \left(24\sqrt{17}\right)^{2}.
\frac{6\left(24\sqrt{17}-216\right)}{576\left(\sqrt{17}\right)^{2}-216^{2}}
Tātaihia te 24 mā te pū o 2, kia riro ko 576.
\frac{6\left(24\sqrt{17}-216\right)}{576\times 17-216^{2}}
Ko te pūrua o \sqrt{17} ko 17.
\frac{6\left(24\sqrt{17}-216\right)}{9792-216^{2}}
Whakareatia te 576 ki te 17, ka 9792.
\frac{6\left(24\sqrt{17}-216\right)}{9792-46656}
Tātaihia te 216 mā te pū o 2, kia riro ko 46656.
\frac{6\left(24\sqrt{17}-216\right)}{-36864}
Tangohia te 46656 i te 9792, ka -36864.
-\frac{1}{6144}\left(24\sqrt{17}-216\right)
Whakawehea te 6\left(24\sqrt{17}-216\right) ki te -36864, kia riro ko -\frac{1}{6144}\left(24\sqrt{17}-216\right).
-\frac{1}{6144}\times 24\sqrt{17}-\frac{1}{6144}\left(-216\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{6144} ki te 24\sqrt{17}-216.
\frac{-24}{6144}\sqrt{17}-\frac{1}{6144}\left(-216\right)
Tuhia te -\frac{1}{6144}\times 24 hei hautanga kotahi.
-\frac{1}{256}\sqrt{17}-\frac{1}{6144}\left(-216\right)
Whakahekea te hautanga \frac{-24}{6144} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 24.
-\frac{1}{256}\sqrt{17}+\frac{-\left(-216\right)}{6144}
Tuhia te -\frac{1}{6144}\left(-216\right) hei hautanga kotahi.
-\frac{1}{256}\sqrt{17}+\frac{216}{6144}
Whakareatia te -1 ki te -216, ka 216.
-\frac{1}{256}\sqrt{17}+\frac{9}{256}
Whakahekea te hautanga \frac{216}{6144} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 24.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}