Aromātai
\frac{16\sqrt{10}}{9165}\approx 0.005520616
Tohaina
Kua tāruatia ki te papatopenga
\frac{32-0}{1833\sqrt{10}}
Tuhia te \frac{\frac{32-0}{1833}}{\sqrt{10}} hei hautanga kotahi.
\frac{32}{1833\sqrt{10}}
Tangohia te 0 i te 32, ka 32.
\frac{32\sqrt{10}}{1833\left(\sqrt{10}\right)^{2}}
Whakangāwaritia te tauraro o \frac{32}{1833\sqrt{10}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{10}.
\frac{32\sqrt{10}}{1833\times 10}
Ko te pūrua o \sqrt{10} ko 10.
\frac{16\sqrt{10}}{5\times 1833}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{16\sqrt{10}}{9165}
Whakareatia te 5 ki te 1833, ka 9165.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}