Aromātai
\frac{\left(3-2x\right)\left(x+1\right)}{x\left(2x+1\right)}
Whakaroha
\frac{3+x-2x^{2}}{x\left(2x+1\right)}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{3-2x}{x^{3}}}{\frac{2}{x^{2}}-\frac{1}{\left(x+1\right)x^{2}}}
Tauwehea te x^{3}+x^{2}.
\frac{\frac{3-2x}{x^{3}}}{\frac{2\left(x+1\right)}{\left(x+1\right)x^{2}}-\frac{1}{\left(x+1\right)x^{2}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x^{2} me \left(x+1\right)x^{2} ko \left(x+1\right)x^{2}. Whakareatia \frac{2}{x^{2}} ki te \frac{x+1}{x+1}.
\frac{\frac{3-2x}{x^{3}}}{\frac{2\left(x+1\right)-1}{\left(x+1\right)x^{2}}}
Tā te mea he rite te tauraro o \frac{2\left(x+1\right)}{\left(x+1\right)x^{2}} me \frac{1}{\left(x+1\right)x^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{3-2x}{x^{3}}}{\frac{2x+2-1}{\left(x+1\right)x^{2}}}
Mahia ngā whakarea i roto o 2\left(x+1\right)-1.
\frac{\frac{3-2x}{x^{3}}}{\frac{2x+1}{\left(x+1\right)x^{2}}}
Whakakotahitia ngā kupu rite i 2x+2-1.
\frac{\left(3-2x\right)\left(x+1\right)x^{2}}{x^{3}\left(2x+1\right)}
Whakawehe \frac{3-2x}{x^{3}} ki te \frac{2x+1}{\left(x+1\right)x^{2}} mā te whakarea \frac{3-2x}{x^{3}} ki te tau huripoki o \frac{2x+1}{\left(x+1\right)x^{2}}.
\frac{\left(x+1\right)\left(-2x+3\right)}{x\left(2x+1\right)}
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
\frac{-2x^{2}+x+3}{x\left(2x+1\right)}
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te -2x+3 ka whakakotahi i ngā kupu rite.
\frac{-2x^{2}+x+3}{2x^{2}+x}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 2x+1.
\frac{\frac{3-2x}{x^{3}}}{\frac{2}{x^{2}}-\frac{1}{\left(x+1\right)x^{2}}}
Tauwehea te x^{3}+x^{2}.
\frac{\frac{3-2x}{x^{3}}}{\frac{2\left(x+1\right)}{\left(x+1\right)x^{2}}-\frac{1}{\left(x+1\right)x^{2}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x^{2} me \left(x+1\right)x^{2} ko \left(x+1\right)x^{2}. Whakareatia \frac{2}{x^{2}} ki te \frac{x+1}{x+1}.
\frac{\frac{3-2x}{x^{3}}}{\frac{2\left(x+1\right)-1}{\left(x+1\right)x^{2}}}
Tā te mea he rite te tauraro o \frac{2\left(x+1\right)}{\left(x+1\right)x^{2}} me \frac{1}{\left(x+1\right)x^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{3-2x}{x^{3}}}{\frac{2x+2-1}{\left(x+1\right)x^{2}}}
Mahia ngā whakarea i roto o 2\left(x+1\right)-1.
\frac{\frac{3-2x}{x^{3}}}{\frac{2x+1}{\left(x+1\right)x^{2}}}
Whakakotahitia ngā kupu rite i 2x+2-1.
\frac{\left(3-2x\right)\left(x+1\right)x^{2}}{x^{3}\left(2x+1\right)}
Whakawehe \frac{3-2x}{x^{3}} ki te \frac{2x+1}{\left(x+1\right)x^{2}} mā te whakarea \frac{3-2x}{x^{3}} ki te tau huripoki o \frac{2x+1}{\left(x+1\right)x^{2}}.
\frac{\left(x+1\right)\left(-2x+3\right)}{x\left(2x+1\right)}
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
\frac{-2x^{2}+x+3}{x\left(2x+1\right)}
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te -2x+3 ka whakakotahi i ngā kupu rite.
\frac{-2x^{2}+x+3}{2x^{2}+x}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 2x+1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}