Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{3-2x}{x^{3}}}{\frac{2}{x^{2}}-\frac{1}{\left(x+1\right)x^{2}}}
Tauwehea te x^{3}+x^{2}.
\frac{\frac{3-2x}{x^{3}}}{\frac{2\left(x+1\right)}{\left(x+1\right)x^{2}}-\frac{1}{\left(x+1\right)x^{2}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x^{2} me \left(x+1\right)x^{2} ko \left(x+1\right)x^{2}. Whakareatia \frac{2}{x^{2}} ki te \frac{x+1}{x+1}.
\frac{\frac{3-2x}{x^{3}}}{\frac{2\left(x+1\right)-1}{\left(x+1\right)x^{2}}}
Tā te mea he rite te tauraro o \frac{2\left(x+1\right)}{\left(x+1\right)x^{2}} me \frac{1}{\left(x+1\right)x^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{3-2x}{x^{3}}}{\frac{2x+2-1}{\left(x+1\right)x^{2}}}
Mahia ngā whakarea i roto o 2\left(x+1\right)-1.
\frac{\frac{3-2x}{x^{3}}}{\frac{2x+1}{\left(x+1\right)x^{2}}}
Whakakotahitia ngā kupu rite i 2x+2-1.
\frac{\left(3-2x\right)\left(x+1\right)x^{2}}{x^{3}\left(2x+1\right)}
Whakawehe \frac{3-2x}{x^{3}} ki te \frac{2x+1}{\left(x+1\right)x^{2}} mā te whakarea \frac{3-2x}{x^{3}} ki te tau huripoki o \frac{2x+1}{\left(x+1\right)x^{2}}.
\frac{\left(x+1\right)\left(-2x+3\right)}{x\left(2x+1\right)}
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
\frac{-2x^{2}+x+3}{x\left(2x+1\right)}
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te -2x+3 ka whakakotahi i ngā kupu rite.
\frac{-2x^{2}+x+3}{2x^{2}+x}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 2x+1.
\frac{\frac{3-2x}{x^{3}}}{\frac{2}{x^{2}}-\frac{1}{\left(x+1\right)x^{2}}}
Tauwehea te x^{3}+x^{2}.
\frac{\frac{3-2x}{x^{3}}}{\frac{2\left(x+1\right)}{\left(x+1\right)x^{2}}-\frac{1}{\left(x+1\right)x^{2}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x^{2} me \left(x+1\right)x^{2} ko \left(x+1\right)x^{2}. Whakareatia \frac{2}{x^{2}} ki te \frac{x+1}{x+1}.
\frac{\frac{3-2x}{x^{3}}}{\frac{2\left(x+1\right)-1}{\left(x+1\right)x^{2}}}
Tā te mea he rite te tauraro o \frac{2\left(x+1\right)}{\left(x+1\right)x^{2}} me \frac{1}{\left(x+1\right)x^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{3-2x}{x^{3}}}{\frac{2x+2-1}{\left(x+1\right)x^{2}}}
Mahia ngā whakarea i roto o 2\left(x+1\right)-1.
\frac{\frac{3-2x}{x^{3}}}{\frac{2x+1}{\left(x+1\right)x^{2}}}
Whakakotahitia ngā kupu rite i 2x+2-1.
\frac{\left(3-2x\right)\left(x+1\right)x^{2}}{x^{3}\left(2x+1\right)}
Whakawehe \frac{3-2x}{x^{3}} ki te \frac{2x+1}{\left(x+1\right)x^{2}} mā te whakarea \frac{3-2x}{x^{3}} ki te tau huripoki o \frac{2x+1}{\left(x+1\right)x^{2}}.
\frac{\left(x+1\right)\left(-2x+3\right)}{x\left(2x+1\right)}
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
\frac{-2x^{2}+x+3}{x\left(2x+1\right)}
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te -2x+3 ka whakakotahi i ngā kupu rite.
\frac{-2x^{2}+x+3}{2x^{2}+x}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 2x+1.