Aromātai
\frac{79}{2500}=0.0316
Tauwehe
\frac{79}{2 ^ {2} \cdot 5 ^ {4}} = 0.0316
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\frac{12}{4}-\frac{1}{4}}{\frac{1}{2}}-\frac{2-\frac{1}{5}}{\frac{1}{3}}}{3-\frac{1}{2}}\left(\frac{3}{4}+\frac{1}{25}\right)
Me tahuri te 3 ki te hautau \frac{12}{4}.
\frac{\frac{\frac{12-1}{4}}{\frac{1}{2}}-\frac{2-\frac{1}{5}}{\frac{1}{3}}}{3-\frac{1}{2}}\left(\frac{3}{4}+\frac{1}{25}\right)
Tā te mea he rite te tauraro o \frac{12}{4} me \frac{1}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{\frac{11}{4}}{\frac{1}{2}}-\frac{2-\frac{1}{5}}{\frac{1}{3}}}{3-\frac{1}{2}}\left(\frac{3}{4}+\frac{1}{25}\right)
Tangohia te 1 i te 12, ka 11.
\frac{\frac{11}{4}\times 2-\frac{2-\frac{1}{5}}{\frac{1}{3}}}{3-\frac{1}{2}}\left(\frac{3}{4}+\frac{1}{25}\right)
Whakawehe \frac{11}{4} ki te \frac{1}{2} mā te whakarea \frac{11}{4} ki te tau huripoki o \frac{1}{2}.
\frac{\frac{11\times 2}{4}-\frac{2-\frac{1}{5}}{\frac{1}{3}}}{3-\frac{1}{2}}\left(\frac{3}{4}+\frac{1}{25}\right)
Tuhia te \frac{11}{4}\times 2 hei hautanga kotahi.
\frac{\frac{22}{4}-\frac{2-\frac{1}{5}}{\frac{1}{3}}}{3-\frac{1}{2}}\left(\frac{3}{4}+\frac{1}{25}\right)
Whakareatia te 11 ki te 2, ka 22.
\frac{\frac{11}{2}-\frac{2-\frac{1}{5}}{\frac{1}{3}}}{3-\frac{1}{2}}\left(\frac{3}{4}+\frac{1}{25}\right)
Whakahekea te hautanga \frac{22}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{11}{2}-\frac{\frac{10}{5}-\frac{1}{5}}{\frac{1}{3}}}{3-\frac{1}{2}}\left(\frac{3}{4}+\frac{1}{25}\right)
Me tahuri te 2 ki te hautau \frac{10}{5}.
\frac{\frac{11}{2}-\frac{\frac{10-1}{5}}{\frac{1}{3}}}{3-\frac{1}{2}}\left(\frac{3}{4}+\frac{1}{25}\right)
Tā te mea he rite te tauraro o \frac{10}{5} me \frac{1}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{11}{2}-\frac{\frac{9}{5}}{\frac{1}{3}}}{3-\frac{1}{2}}\left(\frac{3}{4}+\frac{1}{25}\right)
Tangohia te 1 i te 10, ka 9.
\frac{\frac{11}{2}-\frac{9}{5}\times 3}{3-\frac{1}{2}}\left(\frac{3}{4}+\frac{1}{25}\right)
Whakawehe \frac{9}{5} ki te \frac{1}{3} mā te whakarea \frac{9}{5} ki te tau huripoki o \frac{1}{3}.
\frac{\frac{11}{2}-\frac{9\times 3}{5}}{3-\frac{1}{2}}\left(\frac{3}{4}+\frac{1}{25}\right)
Tuhia te \frac{9}{5}\times 3 hei hautanga kotahi.
\frac{\frac{11}{2}-\frac{27}{5}}{3-\frac{1}{2}}\left(\frac{3}{4}+\frac{1}{25}\right)
Whakareatia te 9 ki te 3, ka 27.
\frac{\frac{55}{10}-\frac{54}{10}}{3-\frac{1}{2}}\left(\frac{3}{4}+\frac{1}{25}\right)
Ko te maha noa iti rawa atu o 2 me 5 ko 10. Me tahuri \frac{11}{2} me \frac{27}{5} ki te hautau me te tautūnga 10.
\frac{\frac{55-54}{10}}{3-\frac{1}{2}}\left(\frac{3}{4}+\frac{1}{25}\right)
Tā te mea he rite te tauraro o \frac{55}{10} me \frac{54}{10}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{1}{10}}{3-\frac{1}{2}}\left(\frac{3}{4}+\frac{1}{25}\right)
Tangohia te 54 i te 55, ka 1.
\frac{\frac{1}{10}}{\frac{6}{2}-\frac{1}{2}}\left(\frac{3}{4}+\frac{1}{25}\right)
Me tahuri te 3 ki te hautau \frac{6}{2}.
\frac{\frac{1}{10}}{\frac{6-1}{2}}\left(\frac{3}{4}+\frac{1}{25}\right)
Tā te mea he rite te tauraro o \frac{6}{2} me \frac{1}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{1}{10}}{\frac{5}{2}}\left(\frac{3}{4}+\frac{1}{25}\right)
Tangohia te 1 i te 6, ka 5.
\frac{1}{10}\times \frac{2}{5}\left(\frac{3}{4}+\frac{1}{25}\right)
Whakawehe \frac{1}{10} ki te \frac{5}{2} mā te whakarea \frac{1}{10} ki te tau huripoki o \frac{5}{2}.
\frac{1\times 2}{10\times 5}\left(\frac{3}{4}+\frac{1}{25}\right)
Me whakarea te \frac{1}{10} ki te \frac{2}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2}{50}\left(\frac{3}{4}+\frac{1}{25}\right)
Mahia ngā whakarea i roto i te hautanga \frac{1\times 2}{10\times 5}.
\frac{1}{25}\left(\frac{3}{4}+\frac{1}{25}\right)
Whakahekea te hautanga \frac{2}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1}{25}\left(\frac{75}{100}+\frac{4}{100}\right)
Ko te maha noa iti rawa atu o 4 me 25 ko 100. Me tahuri \frac{3}{4} me \frac{1}{25} ki te hautau me te tautūnga 100.
\frac{1}{25}\times \frac{75+4}{100}
Tā te mea he rite te tauraro o \frac{75}{100} me \frac{4}{100}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{25}\times \frac{79}{100}
Tāpirihia te 75 ki te 4, ka 79.
\frac{1\times 79}{25\times 100}
Me whakarea te \frac{1}{25} ki te \frac{79}{100} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{79}{2500}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 79}{25\times 100}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}