Aromātai
\frac{3}{x}
Kimi Pārōnaki e ai ki x
-\frac{3}{x^{2}}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{3\left(x^{2}-5\right)}{\left(x^{2}-5\right)x}
Whakawehe \frac{3}{x^{2}-5} ki te \frac{x}{x^{2}-5} mā te whakarea \frac{3}{x^{2}-5} ki te tau huripoki o \frac{x}{x^{2}-5}.
\frac{3}{x}
Me whakakore tahi te x^{2}-5 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x^{2}-5\right)}{\left(x^{2}-5\right)x})
Whakawehe \frac{3}{x^{2}-5} ki te \frac{x}{x^{2}-5} mā te whakarea \frac{3}{x^{2}-5} ki te tau huripoki o \frac{x}{x^{2}-5}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{x})
Me whakakore tahi te x^{2}-5 i te taurunga me te tauraro.
-3x^{-1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-3x^{-2}
Tango 1 mai i -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}