Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{3\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}-\frac{2}{2-\sqrt{3}}}{2-5\sqrt{3}}
Whakangāwaritia te tauraro o \frac{3}{2+\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 2-\sqrt{3}.
\frac{\frac{3\left(2-\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}-\frac{2}{2-\sqrt{3}}}{2-5\sqrt{3}}
Whakaarohia te \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\frac{3\left(2-\sqrt{3}\right)}{4-3}-\frac{2}{2-\sqrt{3}}}{2-5\sqrt{3}}
Pūrua 2. Pūrua \sqrt{3}.
\frac{\frac{3\left(2-\sqrt{3}\right)}{1}-\frac{2}{2-\sqrt{3}}}{2-5\sqrt{3}}
Tangohia te 3 i te 4, ka 1.
\frac{3\left(2-\sqrt{3}\right)-\frac{2}{2-\sqrt{3}}}{2-5\sqrt{3}}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\frac{3\left(2-\sqrt{3}\right)-\frac{2\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}{2-5\sqrt{3}}
Whakangāwaritia te tauraro o \frac{2}{2-\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 2+\sqrt{3}.
\frac{3\left(2-\sqrt{3}\right)-\frac{2\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}}{2-5\sqrt{3}}
Whakaarohia te \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(2-\sqrt{3}\right)-\frac{2\left(2+\sqrt{3}\right)}{4-3}}{2-5\sqrt{3}}
Pūrua 2. Pūrua \sqrt{3}.
\frac{3\left(2-\sqrt{3}\right)-\frac{2\left(2+\sqrt{3}\right)}{1}}{2-5\sqrt{3}}
Tangohia te 3 i te 4, ka 1.
\frac{3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)}{2-5\sqrt{3}}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{\left(2-5\sqrt{3}\right)\left(2+5\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)}{2-5\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 2+5\sqrt{3}.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{2^{2}-\left(-5\sqrt{3}\right)^{2}}
Whakaarohia te \left(2-5\sqrt{3}\right)\left(2+5\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{4-\left(-5\sqrt{3}\right)^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{4-\left(-5\right)^{2}\left(\sqrt{3}\right)^{2}}
Whakarohaina te \left(-5\sqrt{3}\right)^{2}.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{4-25\left(\sqrt{3}\right)^{2}}
Tātaihia te -5 mā te pū o 2, kia riro ko 25.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{4-25\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{4-75}
Whakareatia te 25 ki te 3, ka 75.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{-71}
Tangohia te 75 i te 4, ka -71.
\frac{\left(6-3\sqrt{3}-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{-71}
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2-\sqrt{3}.
\frac{\left(6-3\sqrt{3}-\left(4+2\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{-71}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2+\sqrt{3}.
\frac{\left(6-3\sqrt{3}-4-2\sqrt{3}\right)\left(2+5\sqrt{3}\right)}{-71}
Hei kimi i te tauaro o 4+2\sqrt{3}, kimihia te tauaro o ia taurangi.
\frac{\left(2-3\sqrt{3}-2\sqrt{3}\right)\left(2+5\sqrt{3}\right)}{-71}
Tangohia te 4 i te 6, ka 2.
\frac{\left(2-5\sqrt{3}\right)\left(2+5\sqrt{3}\right)}{-71}
Pahekotia te -3\sqrt{3} me -2\sqrt{3}, ka -5\sqrt{3}.
\frac{2^{2}-\left(5\sqrt{3}\right)^{2}}{-71}
Whakaarohia te \left(2-5\sqrt{3}\right)\left(2+5\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4-\left(5\sqrt{3}\right)^{2}}{-71}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{4-5^{2}\left(\sqrt{3}\right)^{2}}{-71}
Whakarohaina te \left(5\sqrt{3}\right)^{2}.
\frac{4-25\left(\sqrt{3}\right)^{2}}{-71}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\frac{4-25\times 3}{-71}
Ko te pūrua o \sqrt{3} ko 3.
\frac{4-75}{-71}
Whakareatia te 25 ki te 3, ka 75.
\frac{-71}{-71}
Tangohia te 75 i te 4, ka -71.
1
Whakawehea te -71 ki te -71, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}