Aromātai
\frac{53}{5}=10.6
Tauwehe
\frac{53}{5} = 10\frac{3}{5} = 10.6
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{3}{4}\times 6+\frac{\frac{5^{2}}{3}}{\frac{1}{12}}}{6+8-\frac{1}{4}}+3
Whakawehe \frac{3}{4} ki te \frac{1}{6} mā te whakarea \frac{3}{4} ki te tau huripoki o \frac{1}{6}.
\frac{\frac{3\times 6}{4}+\frac{\frac{5^{2}}{3}}{\frac{1}{12}}}{6+8-\frac{1}{4}}+3
Tuhia te \frac{3}{4}\times 6 hei hautanga kotahi.
\frac{\frac{18}{4}+\frac{\frac{5^{2}}{3}}{\frac{1}{12}}}{6+8-\frac{1}{4}}+3
Whakareatia te 3 ki te 6, ka 18.
\frac{\frac{9}{2}+\frac{\frac{5^{2}}{3}}{\frac{1}{12}}}{6+8-\frac{1}{4}}+3
Whakahekea te hautanga \frac{18}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{9}{2}+\frac{5^{2}\times 12}{3}}{6+8-\frac{1}{4}}+3
Whakawehe \frac{5^{2}}{3} ki te \frac{1}{12} mā te whakarea \frac{5^{2}}{3} ki te tau huripoki o \frac{1}{12}.
\frac{\frac{9}{2}+\frac{25\times 12}{3}}{6+8-\frac{1}{4}}+3
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\frac{\frac{9}{2}+\frac{300}{3}}{6+8-\frac{1}{4}}+3
Whakareatia te 25 ki te 12, ka 300.
\frac{\frac{9}{2}+100}{6+8-\frac{1}{4}}+3
Whakawehea te 300 ki te 3, kia riro ko 100.
\frac{\frac{9}{2}+\frac{200}{2}}{6+8-\frac{1}{4}}+3
Me tahuri te 100 ki te hautau \frac{200}{2}.
\frac{\frac{9+200}{2}}{6+8-\frac{1}{4}}+3
Tā te mea he rite te tauraro o \frac{9}{2} me \frac{200}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{209}{2}}{6+8-\frac{1}{4}}+3
Tāpirihia te 9 ki te 200, ka 209.
\frac{\frac{209}{2}}{14-\frac{1}{4}}+3
Tāpirihia te 6 ki te 8, ka 14.
\frac{\frac{209}{2}}{\frac{56}{4}-\frac{1}{4}}+3
Me tahuri te 14 ki te hautau \frac{56}{4}.
\frac{\frac{209}{2}}{\frac{56-1}{4}}+3
Tā te mea he rite te tauraro o \frac{56}{4} me \frac{1}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{209}{2}}{\frac{55}{4}}+3
Tangohia te 1 i te 56, ka 55.
\frac{209}{2}\times \frac{4}{55}+3
Whakawehe \frac{209}{2} ki te \frac{55}{4} mā te whakarea \frac{209}{2} ki te tau huripoki o \frac{55}{4}.
\frac{209\times 4}{2\times 55}+3
Me whakarea te \frac{209}{2} ki te \frac{4}{55} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{836}{110}+3
Mahia ngā whakarea i roto i te hautanga \frac{209\times 4}{2\times 55}.
\frac{38}{5}+3
Whakahekea te hautanga \frac{836}{110} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 22.
\frac{38}{5}+\frac{15}{5}
Me tahuri te 3 ki te hautau \frac{15}{5}.
\frac{38+15}{5}
Tā te mea he rite te tauraro o \frac{38}{5} me \frac{15}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{53}{5}
Tāpirihia te 38 ki te 15, ka 53.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}