Aromātai
-1+\frac{5}{a}
Whakaroha
-1+\frac{5}{a}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{25}{a}-\frac{aa}{a}}{5+a}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia a ki te \frac{a}{a}.
\frac{\frac{25-aa}{a}}{5+a}
Tā te mea he rite te tauraro o \frac{25}{a} me \frac{aa}{a}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{25-a^{2}}{a}}{5+a}
Mahia ngā whakarea i roto o 25-aa.
\frac{25-a^{2}}{a\left(5+a\right)}
Tuhia te \frac{\frac{25-a^{2}}{a}}{5+a} hei hautanga kotahi.
\frac{\left(a-5\right)\left(-a-5\right)}{a\left(a+5\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-\left(a-5\right)\left(a+5\right)}{a\left(a+5\right)}
Unuhia te tohu tōraro i roto o -5-a.
\frac{-\left(a-5\right)}{a}
Me whakakore tahi te a+5 i te taurunga me te tauraro.
\frac{-a+5}{a}
Me whakaroha te kīanga.
\frac{\frac{25}{a}-\frac{aa}{a}}{5+a}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia a ki te \frac{a}{a}.
\frac{\frac{25-aa}{a}}{5+a}
Tā te mea he rite te tauraro o \frac{25}{a} me \frac{aa}{a}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{25-a^{2}}{a}}{5+a}
Mahia ngā whakarea i roto o 25-aa.
\frac{25-a^{2}}{a\left(5+a\right)}
Tuhia te \frac{\frac{25-a^{2}}{a}}{5+a} hei hautanga kotahi.
\frac{\left(a-5\right)\left(-a-5\right)}{a\left(a+5\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-\left(a-5\right)\left(a+5\right)}{a\left(a+5\right)}
Unuhia te tohu tōraro i roto o -5-a.
\frac{-\left(a-5\right)}{a}
Me whakakore tahi te a+5 i te taurunga me te tauraro.
\frac{-a+5}{a}
Me whakaroha te kīanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}