Aromātai
\frac{y\left(2-x\right)}{x\left(3y+5\right)}
Whakaroha
\frac{2y-xy}{x\left(3y+5\right)}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{2}{x}-\frac{x}{x}}{3+\frac{5}{y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x}{x}.
\frac{\frac{2-x}{x}}{3+\frac{5}{y}}
Tā te mea he rite te tauraro o \frac{2}{x} me \frac{x}{x}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{2-x}{x}}{\frac{3y}{y}+\frac{5}{y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{y}{y}.
\frac{\frac{2-x}{x}}{\frac{3y+5}{y}}
Tā te mea he rite te tauraro o \frac{3y}{y} me \frac{5}{y}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(2-x\right)y}{x\left(3y+5\right)}
Whakawehe \frac{2-x}{x} ki te \frac{3y+5}{y} mā te whakarea \frac{2-x}{x} ki te tau huripoki o \frac{3y+5}{y}.
\frac{2y-xy}{x\left(3y+5\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te 2-x ki te y.
\frac{2y-xy}{3xy+5x}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 3y+5.
\frac{\frac{2}{x}-\frac{x}{x}}{3+\frac{5}{y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x}{x}.
\frac{\frac{2-x}{x}}{3+\frac{5}{y}}
Tā te mea he rite te tauraro o \frac{2}{x} me \frac{x}{x}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{2-x}{x}}{\frac{3y}{y}+\frac{5}{y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{y}{y}.
\frac{\frac{2-x}{x}}{\frac{3y+5}{y}}
Tā te mea he rite te tauraro o \frac{3y}{y} me \frac{5}{y}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(2-x\right)y}{x\left(3y+5\right)}
Whakawehe \frac{2-x}{x} ki te \frac{3y+5}{y} mā te whakarea \frac{2-x}{x} ki te tau huripoki o \frac{3y+5}{y}.
\frac{2y-xy}{x\left(3y+5\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te 2-x ki te y.
\frac{2y-xy}{3xy+5x}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 3y+5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}