Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{2}{x}-\frac{x}{x}}{3+\frac{5}{y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x}{x}.
\frac{\frac{2-x}{x}}{3+\frac{5}{y}}
Tā te mea he rite te tauraro o \frac{2}{x} me \frac{x}{x}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{2-x}{x}}{\frac{3y}{y}+\frac{5}{y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{y}{y}.
\frac{\frac{2-x}{x}}{\frac{3y+5}{y}}
Tā te mea he rite te tauraro o \frac{3y}{y} me \frac{5}{y}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(2-x\right)y}{x\left(3y+5\right)}
Whakawehe \frac{2-x}{x} ki te \frac{3y+5}{y} mā te whakarea \frac{2-x}{x} ki te tau huripoki o \frac{3y+5}{y}.
\frac{2y-xy}{x\left(3y+5\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te 2-x ki te y.
\frac{2y-xy}{3xy+5x}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 3y+5.
\frac{\frac{2}{x}-\frac{x}{x}}{3+\frac{5}{y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x}{x}.
\frac{\frac{2-x}{x}}{3+\frac{5}{y}}
Tā te mea he rite te tauraro o \frac{2}{x} me \frac{x}{x}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{2-x}{x}}{\frac{3y}{y}+\frac{5}{y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{y}{y}.
\frac{\frac{2-x}{x}}{\frac{3y+5}{y}}
Tā te mea he rite te tauraro o \frac{3y}{y} me \frac{5}{y}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(2-x\right)y}{x\left(3y+5\right)}
Whakawehe \frac{2-x}{x} ki te \frac{3y+5}{y} mā te whakarea \frac{2-x}{x} ki te tau huripoki o \frac{3y+5}{y}.
\frac{2y-xy}{x\left(3y+5\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te 2-x ki te y.
\frac{2y-xy}{3xy+5x}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 3y+5.