Aromātai
\frac{a+b}{4}
Whakaroha
\frac{a+b}{4}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\frac{2}{a}+\frac{2}{b}\right)ab}{8}
Whakawehe \frac{2}{a}+\frac{2}{b} ki te \frac{8}{ab} mā te whakarea \frac{2}{a}+\frac{2}{b} ki te tau huripoki o \frac{8}{ab}.
\frac{\left(\frac{2b}{ab}+\frac{2a}{ab}\right)ab}{8}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a me b ko ab. Whakareatia \frac{2}{a} ki te \frac{b}{b}. Whakareatia \frac{2}{b} ki te \frac{a}{a}.
\frac{\frac{2b+2a}{ab}ab}{8}
Tā te mea he rite te tauraro o \frac{2b}{ab} me \frac{2a}{ab}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{\left(2b+2a\right)a}{ab}b}{8}
Tuhia te \frac{2b+2a}{ab}a hei hautanga kotahi.
\frac{\frac{2a+2b}{b}b}{8}
Me whakakore tahi te a i te taurunga me te tauraro.
\frac{2a+2b}{8}
Me whakakore te b me te b.
\frac{\left(\frac{2}{a}+\frac{2}{b}\right)ab}{8}
Whakawehe \frac{2}{a}+\frac{2}{b} ki te \frac{8}{ab} mā te whakarea \frac{2}{a}+\frac{2}{b} ki te tau huripoki o \frac{8}{ab}.
\frac{\left(\frac{2b}{ab}+\frac{2a}{ab}\right)ab}{8}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a me b ko ab. Whakareatia \frac{2}{a} ki te \frac{b}{b}. Whakareatia \frac{2}{b} ki te \frac{a}{a}.
\frac{\frac{2b+2a}{ab}ab}{8}
Tā te mea he rite te tauraro o \frac{2b}{ab} me \frac{2a}{ab}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{\left(2b+2a\right)a}{ab}b}{8}
Tuhia te \frac{2b+2a}{ab}a hei hautanga kotahi.
\frac{\frac{2a+2b}{b}b}{8}
Me whakakore tahi te a i te taurunga me te tauraro.
\frac{2a+2b}{8}
Me whakakore te b me te b.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}