Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{2\left(-1\right)}{x-6}+\frac{3}{x-6}}{\frac{2}{x}+\frac{4}{x-6}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 6-x me x-6 ko x-6. Whakareatia \frac{2}{6-x} ki te \frac{-1}{-1}.
\frac{\frac{2\left(-1\right)+3}{x-6}}{\frac{2}{x}+\frac{4}{x-6}}
Tā te mea he rite te tauraro o \frac{2\left(-1\right)}{x-6} me \frac{3}{x-6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{-2+3}{x-6}}{\frac{2}{x}+\frac{4}{x-6}}
Mahia ngā whakarea i roto o 2\left(-1\right)+3.
\frac{\frac{1}{x-6}}{\frac{2}{x}+\frac{4}{x-6}}
Mahia ngā tātaitai i roto o -2+3.
\frac{\frac{1}{x-6}}{\frac{2\left(x-6\right)}{x\left(x-6\right)}+\frac{4x}{x\left(x-6\right)}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x me x-6 ko x\left(x-6\right). Whakareatia \frac{2}{x} ki te \frac{x-6}{x-6}. Whakareatia \frac{4}{x-6} ki te \frac{x}{x}.
\frac{\frac{1}{x-6}}{\frac{2\left(x-6\right)+4x}{x\left(x-6\right)}}
Tā te mea he rite te tauraro o \frac{2\left(x-6\right)}{x\left(x-6\right)} me \frac{4x}{x\left(x-6\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{1}{x-6}}{\frac{2x-12+4x}{x\left(x-6\right)}}
Mahia ngā whakarea i roto o 2\left(x-6\right)+4x.
\frac{\frac{1}{x-6}}{\frac{6x-12}{x\left(x-6\right)}}
Whakakotahitia ngā kupu rite i 2x-12+4x.
\frac{x\left(x-6\right)}{\left(x-6\right)\left(6x-12\right)}
Whakawehe \frac{1}{x-6} ki te \frac{6x-12}{x\left(x-6\right)} mā te whakarea \frac{1}{x-6} ki te tau huripoki o \frac{6x-12}{x\left(x-6\right)}.
\frac{x}{6x-12}
Me whakakore tahi te x-6 i te taurunga me te tauraro.
\frac{\frac{2\left(-1\right)}{x-6}+\frac{3}{x-6}}{\frac{2}{x}+\frac{4}{x-6}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 6-x me x-6 ko x-6. Whakareatia \frac{2}{6-x} ki te \frac{-1}{-1}.
\frac{\frac{2\left(-1\right)+3}{x-6}}{\frac{2}{x}+\frac{4}{x-6}}
Tā te mea he rite te tauraro o \frac{2\left(-1\right)}{x-6} me \frac{3}{x-6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{-2+3}{x-6}}{\frac{2}{x}+\frac{4}{x-6}}
Mahia ngā whakarea i roto o 2\left(-1\right)+3.
\frac{\frac{1}{x-6}}{\frac{2}{x}+\frac{4}{x-6}}
Mahia ngā tātaitai i roto o -2+3.
\frac{\frac{1}{x-6}}{\frac{2\left(x-6\right)}{x\left(x-6\right)}+\frac{4x}{x\left(x-6\right)}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x me x-6 ko x\left(x-6\right). Whakareatia \frac{2}{x} ki te \frac{x-6}{x-6}. Whakareatia \frac{4}{x-6} ki te \frac{x}{x}.
\frac{\frac{1}{x-6}}{\frac{2\left(x-6\right)+4x}{x\left(x-6\right)}}
Tā te mea he rite te tauraro o \frac{2\left(x-6\right)}{x\left(x-6\right)} me \frac{4x}{x\left(x-6\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{1}{x-6}}{\frac{2x-12+4x}{x\left(x-6\right)}}
Mahia ngā whakarea i roto o 2\left(x-6\right)+4x.
\frac{\frac{1}{x-6}}{\frac{6x-12}{x\left(x-6\right)}}
Whakakotahitia ngā kupu rite i 2x-12+4x.
\frac{x\left(x-6\right)}{\left(x-6\right)\left(6x-12\right)}
Whakawehe \frac{1}{x-6} ki te \frac{6x-12}{x\left(x-6\right)} mā te whakarea \frac{1}{x-6} ki te tau huripoki o \frac{6x-12}{x\left(x-6\right)}.
\frac{x}{6x-12}
Me whakakore tahi te x-6 i te taurunga me te tauraro.