Aromātai
\frac{3}{2}=1.5
Tauwehe
\frac{3}{2} = 1\frac{1}{2} = 1.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}\times 6+\frac{\frac{1}{4}}{\frac{3}{2}}-\frac{\frac{4}{5}}{\frac{3}{10}}
Whakawehe \frac{2}{3} ki te \frac{1}{6} mā te whakarea \frac{2}{3} ki te tau huripoki o \frac{1}{6}.
\frac{2\times 6}{3}+\frac{\frac{1}{4}}{\frac{3}{2}}-\frac{\frac{4}{5}}{\frac{3}{10}}
Tuhia te \frac{2}{3}\times 6 hei hautanga kotahi.
\frac{12}{3}+\frac{\frac{1}{4}}{\frac{3}{2}}-\frac{\frac{4}{5}}{\frac{3}{10}}
Whakareatia te 2 ki te 6, ka 12.
4+\frac{\frac{1}{4}}{\frac{3}{2}}-\frac{\frac{4}{5}}{\frac{3}{10}}
Whakawehea te 12 ki te 3, kia riro ko 4.
4+\frac{1}{4}\times \frac{2}{3}-\frac{\frac{4}{5}}{\frac{3}{10}}
Whakawehe \frac{1}{4} ki te \frac{3}{2} mā te whakarea \frac{1}{4} ki te tau huripoki o \frac{3}{2}.
4+\frac{1\times 2}{4\times 3}-\frac{\frac{4}{5}}{\frac{3}{10}}
Me whakarea te \frac{1}{4} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
4+\frac{2}{12}-\frac{\frac{4}{5}}{\frac{3}{10}}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 2}{4\times 3}.
4+\frac{1}{6}-\frac{\frac{4}{5}}{\frac{3}{10}}
Whakahekea te hautanga \frac{2}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{24}{6}+\frac{1}{6}-\frac{\frac{4}{5}}{\frac{3}{10}}
Me tahuri te 4 ki te hautau \frac{24}{6}.
\frac{24+1}{6}-\frac{\frac{4}{5}}{\frac{3}{10}}
Tā te mea he rite te tauraro o \frac{24}{6} me \frac{1}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{25}{6}-\frac{\frac{4}{5}}{\frac{3}{10}}
Tāpirihia te 24 ki te 1, ka 25.
\frac{25}{6}-\frac{4}{5}\times \frac{10}{3}
Whakawehe \frac{4}{5} ki te \frac{3}{10} mā te whakarea \frac{4}{5} ki te tau huripoki o \frac{3}{10}.
\frac{25}{6}-\frac{4\times 10}{5\times 3}
Me whakarea te \frac{4}{5} ki te \frac{10}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{25}{6}-\frac{40}{15}
Mahia ngā whakarea i roto i te hautanga \frac{4\times 10}{5\times 3}.
\frac{25}{6}-\frac{8}{3}
Whakahekea te hautanga \frac{40}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{25}{6}-\frac{16}{6}
Ko te maha noa iti rawa atu o 6 me 3 ko 6. Me tahuri \frac{25}{6} me \frac{8}{3} ki te hautau me te tautūnga 6.
\frac{25-16}{6}
Tā te mea he rite te tauraro o \frac{25}{6} me \frac{16}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{9}{6}
Tangohia te 16 i te 25, ka 9.
\frac{3}{2}
Whakahekea te hautanga \frac{9}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}