Aromātai
\frac{22}{95}\approx 0.231578947
Tauwehe
\frac{2 \cdot 11}{5 \cdot 19} = 0.23157894736842105
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\frac{6}{3}+\frac{1}{3}}{7}+\frac{1-\frac{1}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Me tahuri te 2 ki te hautau \frac{6}{3}.
\frac{\frac{\frac{6+1}{3}}{7}+\frac{1-\frac{1}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Tā te mea he rite te tauraro o \frac{6}{3} me \frac{1}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{\frac{7}{3}}{7}+\frac{1-\frac{1}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Tāpirihia te 6 ki te 1, ka 7.
\frac{\frac{7}{3\times 7}+\frac{1-\frac{1}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Tuhia te \frac{\frac{7}{3}}{7} hei hautanga kotahi.
\frac{\frac{1}{3}+\frac{1-\frac{1}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Me whakakore tahi te 7 i te taurunga me te tauraro.
\frac{\frac{1}{3}+\frac{\frac{4}{4}-\frac{1}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Me tahuri te 1 ki te hautau \frac{4}{4}.
\frac{\frac{1}{3}+\frac{\frac{4-1}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Tā te mea he rite te tauraro o \frac{4}{4} me \frac{1}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{1}{3}+\frac{\frac{3}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Tangohia te 1 i te 4, ka 3.
\frac{\frac{1}{3}+\frac{3}{4\times 3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Tuhia te \frac{\frac{3}{4}}{3} hei hautanga kotahi.
\frac{\frac{1}{3}+\frac{1}{4}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{\frac{4}{12}+\frac{3}{12}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{1}{3} me \frac{1}{4} ki te hautau me te tautūnga 12.
\frac{\frac{4+3}{12}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Tā te mea he rite te tauraro o \frac{4}{12} me \frac{3}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{7}{12}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Tāpirihia te 4 ki te 3, ka 7.
\frac{\frac{7}{12}}{\frac{1}{2}\times 4-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Whakawehe \frac{1}{2} ki te \frac{1}{4} mā te whakarea \frac{1}{2} ki te tau huripoki o \frac{1}{4}.
\frac{\frac{7}{12}}{\frac{4}{2}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Whakareatia te \frac{1}{2} ki te 4, ka \frac{4}{2}.
\frac{\frac{7}{12}}{2-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Whakawehea te 4 ki te 2, kia riro ko 2.
\frac{\frac{7}{12}}{2-1\times \frac{3}{4}}\left(\frac{2}{7}+\frac{4}{19}\right)
Whakawehe 1 ki te \frac{4}{3} mā te whakarea 1 ki te tau huripoki o \frac{4}{3}.
\frac{\frac{7}{12}}{2-\frac{3}{4}}\left(\frac{2}{7}+\frac{4}{19}\right)
Whakareatia te 1 ki te \frac{3}{4}, ka \frac{3}{4}.
\frac{\frac{7}{12}}{\frac{8}{4}-\frac{3}{4}}\left(\frac{2}{7}+\frac{4}{19}\right)
Me tahuri te 2 ki te hautau \frac{8}{4}.
\frac{\frac{7}{12}}{\frac{8-3}{4}}\left(\frac{2}{7}+\frac{4}{19}\right)
Tā te mea he rite te tauraro o \frac{8}{4} me \frac{3}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{7}{12}}{\frac{5}{4}}\left(\frac{2}{7}+\frac{4}{19}\right)
Tangohia te 3 i te 8, ka 5.
\frac{7}{12}\times \frac{4}{5}\left(\frac{2}{7}+\frac{4}{19}\right)
Whakawehe \frac{7}{12} ki te \frac{5}{4} mā te whakarea \frac{7}{12} ki te tau huripoki o \frac{5}{4}.
\frac{7\times 4}{12\times 5}\left(\frac{2}{7}+\frac{4}{19}\right)
Me whakarea te \frac{7}{12} ki te \frac{4}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{28}{60}\left(\frac{2}{7}+\frac{4}{19}\right)
Mahia ngā whakarea i roto i te hautanga \frac{7\times 4}{12\times 5}.
\frac{7}{15}\left(\frac{2}{7}+\frac{4}{19}\right)
Whakahekea te hautanga \frac{28}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{7}{15}\left(\frac{38}{133}+\frac{28}{133}\right)
Ko te maha noa iti rawa atu o 7 me 19 ko 133. Me tahuri \frac{2}{7} me \frac{4}{19} ki te hautau me te tautūnga 133.
\frac{7}{15}\times \frac{38+28}{133}
Tā te mea he rite te tauraro o \frac{38}{133} me \frac{28}{133}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{7}{15}\times \frac{66}{133}
Tāpirihia te 38 ki te 28, ka 66.
\frac{7\times 66}{15\times 133}
Me whakarea te \frac{7}{15} ki te \frac{66}{133} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{462}{1995}
Mahia ngā whakarea i roto i te hautanga \frac{7\times 66}{15\times 133}.
\frac{22}{95}
Whakahekea te hautanga \frac{462}{1995} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 21.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}