Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Tohaina

\frac{1}{y\times 2x}\times \frac{\frac{1}{2x}}{\frac{1}{y}}
Tuhia te \frac{\frac{1}{y}}{2x} hei hautanga kotahi.
\frac{1}{y\times 2x}\times \frac{y}{2x}
Whakawehe \frac{1}{2x} ki te \frac{1}{y} mā te whakarea \frac{1}{2x} ki te tau huripoki o \frac{1}{y}.
\frac{y}{y\times 2x\times 2x}
Me whakarea te \frac{1}{y\times 2x} ki te \frac{y}{2x} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{2\times 2xx}
Me whakakore tahi te y i te taurunga me te tauraro.
\frac{1}{2\times 2x^{2}}
Whakareatia te x ki te x, ka x^{2}.
\frac{1}{4x^{2}}
Whakareatia te 2 ki te 2, ka 4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{y\times 2x}\times \frac{\frac{1}{2x}}{\frac{1}{y}})
Tuhia te \frac{\frac{1}{y}}{2x} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{y\times 2x}\times \frac{y}{2x})
Whakawehe \frac{1}{2x} ki te \frac{1}{y} mā te whakarea \frac{1}{2x} ki te tau huripoki o \frac{1}{y}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{y}{y\times 2x\times 2x})
Me whakarea te \frac{1}{y\times 2x} ki te \frac{y}{2x} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2\times 2xx})
Me whakakore tahi te y i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2\times 2x^{2}})
Whakareatia te x ki te x, ka x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{4x^{2}})
Whakareatia te 2 ki te 2, ka 4.
-\left(4x^{2}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(4x^{2})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(4x^{2}\right)^{-2}\times 2\times 4x^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-8x^{1}\times \left(4x^{2}\right)^{-2}
Whakarūnātia.
-8x\times \left(4x^{2}\right)^{-2}
Mō tētahi kupu t, t^{1}=t.